본 논문에서는 동영상에서 에지 정보와 히스토그램 분석을 이용하여 실시간으로 움직이는 물체를 검출하고 추적하는 방법을 제안하였다. 물체 검출에서는 먼저, 입력영상에 대하여 형태에 관한 정보를 그대로 유지하면서 자료의 양을 줄일 수 있는 에지(Edge)를 추출한다. 추출된 에지 영상에 차연산과 이진화를 수행하여 물체를 검출하고, 검출된 물체 영역은 이진 변환밀도에 대한 수평 누적값의 합을 수평 수직 최대 누적값을 더한 값으로 나눈 임계값으로 구한다. 물체 추적에서는 현재 프레임에서 검출된 물체와 이전 프레임에서 검출된 물체와의 유사성을 비교하여 추적한다. 실험결과 물체 검출속도를 개선시켰고, 실시간으로 물체를 추적할 수 있었으며, 국부적인 움직임까지도 추적할 수 있었다.
햅틱 협업을 위한 네트워크는 기본적으로 지연, 지터, 손실의 제약을 가진다. 햅틱은 정보의 속도에 민감하므로 네트워크 환경에서 협업을 이루어내기에 많은 제약이 있다. 특히 협업의 품질을 감소시키는 네트워크 지연을 보상하기 위한 연구가 필요하다. 본 논문에서는 물체의 좌표 전송을 기반으로 한 햅틱 협업이 높은 수준의 지연시간을 지닌 네트워크에서 발생할 수 있는 문제를 정의하고 그 원인을 파악하여 안정적인 협업을 유지하기 위하여 네트워크 지연 문제를 보상할 수 있는 기법을 제시한다. 네트워크 지연에 의해서 물체를 밀 때 더 많은 힘을 사용되는 현상과 클라이언트들이 물체를 들어올릴 때 물체가 진동하는 현상이 발생된다. 이 문제를 해결하기 위해 물체의 강도를 변경하는 방법을 제안한다. 지연 시간의 수준이 증가하여도 지연 문제가 발생하지 않게 함과 동시에 최대한 원래 물체 강도를 유지하기 위해서 클라이언트가 물체에 발생시키고자 하는 힘과 서버에서 물체에 발생시키는 힘을 같도록 만드는 수식을 유도한다. 이 수식을 이용하여 지연의 크기에 관계없이 클라이언트가 물체의 위치를 제어할 수 있다. 지연 보상 기법을 통해 햅틱 미디어의 품질을 유지하면서 지연에 의한 문제를 해결하는 방안을 제시하며, 실제 실험을 통하여 결과를 확인한다.
본 논문에서는 인간의 눈 움직임이 반영된 물체 추적 기능을 모방하여 CCD 카메라를 통하여 실시간으로 입력되는 영상 데이터로부터 특징기반 정합방법을 응용하여 움직임 정보를 추출한 후, 팬-틸트(pan-tilt) 기능의 하드웨어를 제어하여 실시간으로 이동하는 물체를 효율적으로 추적하는 시스템을 제안하였다. 기존의 연구들에서는 주로 물체의 색상값을 이용하여 추적이 이루어지므로 조명이나 카메라의 변화에 따라 이동 물체를 놓치거나 유사한 색의 다른 물체를 잘못 추적하는 문제가 있었다. 이러한 문제점을 해결하기 위하여 측정기반의 정합을 응용하여 이동하는 카메라에서 이동물체를 추출하고 이 이동 물체의 좌표를 이동하여 팬-틸트 하드웨어를 제어하여 추적을 수행하였다. 실험 결과 본 시스템은 움직이는 물체를 감지해서 팬-틸트 하드웨어를 올바르게 제어하며 카메라의 움직임을 보정해가며 전체적으로 움직이는 영상 내에서 실제 움직이는 물체를 일관성 있게 추적하는 만족스러운 결과를 보인다.
다중 물체 추적은 움직이는 물체를 추출하고 추출된 정보와 물체 정보를 이용하여 움직임 궤도를 추적하는 것이다. 따라서 정확한 움직임 궤도 추적이 수행되어지려면 우선적으로 물체의 수에 해당하는 Object 추출이 선행되어져야 한다. 물체 추적 시 물체 추출은 주로 처리속도가 빠르고 효율적인 배경영상을 이용한 차영상 기법을 이용하는데 이 경우 배경 영상 갱신이 중요하다. 본 논문에서는 실세계조명 하에서 장시간 다중 물체 추적이 가능하도록 물체의 움직임이 아닌 물체의 위치에 기반한 배경 영상 획득 방법을 제안한다.
움직이는 물체를 분류하는 것은 영상 감시 시스템에서 가장 중요한 분야 중의 하나이다. 사람과 자동차는 영상 감사 시스템에서 인식해야 하는 가장 중요한 물체의 종류이기 때문에 본 연구에서는 인식하는 물체의 종류를 이것들로 제한한다. 사용되는 특성으로는 물체의 움직임에서 추출되는 특성과 형태에서 추출되는 특성이 있다. 이 두 가지 특성들은 정지된 하나의 카메라로부터 입력된 영상에 나타나는 물체를 분류하기 위하여 사용된다. 움직임으로부터 추출되는 특성은 연결 성분 분석을 이용한 물체 추적과 밀접한 관련이 있다. 그리고 형태 기반 특성에 관한 학습은 종횡비(aspect ratio)와 4개의 윤곽선을 가지고 수행된다. 움직임 기반 특성과 종횡비는 물체를 사람과 자동차로 구분하는데 이용되고 각각의 종류를 더욱 세분화하기 위하여 4개의 윤곽선이 사용된다.
본 논문에서는 물체의 모양 정보를 나타내는 물체 표면의 법선 벡터 데이터와 컬러 영상으로부터, 강한 표현력을 갖도록 학습을 통해 특징을 추출하는 효과적인 물체 인식 시스템을 제안한다. 본 논문에서 제안하는 물체 인식 시스템에서는 입력되는 깊이 영상을 물체 표면의 법선 벡터로 변환하여, 단순한 거리 측정치를 물체 인식에 유리한 표면 모양 정보로 활용하였을 뿐 아니라 센서 위치나 방향에 대한 의존성을 감소시켰다. 또한, 본 시스템에서는 실세계의 수많은 물체들의 고유한 특성들을 잘 표현해 줄 수 있도록, 다계층 학습을 통하여 특징을 추출하였다. 워싱턴 대학의 RGB-D 물체 데이터 집합을 이용하여 다양한 성능 분석 실험을 수행하였고, 이를 통해 본 논문에서 제안하는 물체 인식 시스템의 높은 성능을 확인할 수 있었다.
정지 영상이나 비디오 영상 시퀀스에서 배경 영상으로부터 움직이는 관심 물체를 구별하기 위한 실시간 물체 검출은 물체의 위치 추적과 인식에 있어 필수적인 단계이다. 물체 분할 후에 그림자 영역이 움직이는 물체 영역에 포함되어지기 때문에 그림자는 물체의 일부분 혹은 움직이는 물체로 오분류될 수 있다. 이러한 이유로 그림자 제거 알고리즘은 움직이는 물체 검출 및 추적 시스템의 결과에 중요한 역할을 한다. 이 문제점들을 해결하기 위해 본 논문에서는 움직이는 물체의 특징과 색상공간에서 그림자의 특징에 기반을 둔 정확한 물체 검출과 그림자 제거 알고리즘을 제안한다. 실험결과는 제안 알고리즘이 실험 영상에서 물체 검출과 그림자 제거에 대해 효과적인 것을 알 수가 있다.
물체 추적시스템은 비디오 감시 시스템, 화상회의 시스템과 같은 다양한 비전 응용 분야에서 점점 비중이 높아지고 있다. 이 시스템에서 가장 널리 사용되고 있는 방법 중 하나로 Particle-Filter를 들 수 있다. 하지만, 이 Particle-Filter의 단점은 유사한 여러 물체를 추적할 때에 그 물체들이 겹치거나 사라질 경우 정확한 추적을 하기 어렵다는 것이다. 이 단점을 극복하기 위해 많은 연구가 진행되고 있으며, 본 논문에서는 이 문제를 극복하기 위한 새로운 방법을 제안하고자 한다. 다중 물체 추적에서 빈번히 일어나는 문제는 두 가지로 요약할 수 있는데, 동일한 다중 물체가 부분적으로 엇갈리거나 다른 객체에 완전히 겹친 후 떨어질 때 한 물체를 중복하여 추적하는 문제(merge and split problem)와 이 때 분리되어 추적은 됐지만, 물체를 혼동하여 추적하는 문제(Labeling problem)이다. 본 논문에서는 이 러한 문제들을 풀기 위해 이미지 필드에서 보다 정확한 확률분포를 만들고, 이 확률분포의 신뢰성을 높이기 위해서 물체의 특징정보를 표현하는 몇 가지 방법을 제안한다. 전자의 문제는 두 가지 문제로 나누어 생각해 보았다. 첫째, 복잡환 환경에서의 분포를 찾아내는 것과 둘째, 추적 중인 물체를 잃어버릴 경우 새로운 샘플을 생성함으로써 나누어 보았다. 이 문제 중 첫번째는 K-means 클러스터링을 이용하여 유사한 물체가 주변에 퍼져 있을 때, 하나의 후보 위치가 아닌, K개의 후보 위치들을 만들어 내어 보다 정확한 추적이 가능하게 하였으며, 두 번째 문제는 추적 중인 물체가 다른 커다란 물체에 가려질 경우이다. 이 상황에서 샘플을 생성하는 방법은 지금까지 해왔던 간단한 환경에서의 생성 범위와는 다르게 넓게 해야 생성시켜야 한다. 이 때 샘플링의 수를 늘리지 않으면서, 최대한 정확하게 추적하기 위해서 동영상에서 물체의 모션을 이용한 모션 히스토그램을 얻어내고, 그 정보를 이용하여 샘플을 생성하는 위치를 조절함으로써 이 문제를 풀어 보았다. 그리고, 후자의 문제인 이미지 필드상에서 확률분포의 신뢰성을 높이기 위한 특징 정보는 기존에 많이 사용하던 칼라 히스토그램에 공간정보의 의미를 부여하는 칼라 히스토그램을 분할하는 방법과 SIFT에서 사용하는 방향정보와 크기정보를 사용했다. 이것들을 사용하여 보다 정확한 물체추적시스템을 다음과 같이 제안한다.
효율적인 물체인식을 위해서는 물체의 형상특징을 직선적으로 기술할 수 있는 체적소 기반 물체 표현 방법이 필요하다. 본 논문에서는 몇 개의 계수를 가지고 3차원 정보를 효율적으로 표현할 수 있는 superquadric을 이용하여 기본적인 3차원 물체를 모델링 한다. 그리고 보다 복잡하고 정교한 물체의 표현을 위해서 변형된 superquadric을 함께 이용한다. 이렇게 만들어진 개개의 3차원 모델에 z-buffer 알고리즘을 적용하여 하나의 완전한 3차원 물체로 표현하는 방법을 제시하고 실험을 통해 그 유용성을 입증하였다.
이동 물체 검출 및 추적은 과중한 연산량에 의해 초당 처리할 수 있는 프레임의 수가 적게 되거나 정합 과정이 단순하여 추적을 실패하는 문제점들이 있다. 본 논문에서는 동영상내에서 이동 물체를 검출하고 추적하는 새로운 접근 방법을 제안한다. 입력된 영상으로부터 배경과 물체를 분리하기 위해 background subtraction을 이용하였고, 분리된 물체들은 이진 연결 요소 분석을 통하여 세그먼트 된다. 그리고 물체의 추적을 위하여 Kalman filter를 사용하였다. 본 논문의 실험에서는 야외에서 촬영한 비디오 시퀀스를 이용하였으며, 물체 검출 및 추적이 조명 변화, 그림자에도 잘 적응함을 증명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.