최근 증강현실 산업 분야가 많은 각광을 받고, 시장이 성장함에 따라 보다 쉽게 증강현실을 구현 할 수 있도록 많은 SDK(Software Development Kit)들이 발표되었다. 기존에 발표 된 SDK들이 대부분 강체 추적만을 제공한다. 이는 현재 추적 알고리즘의 기반이 되는 이론이 강체에 한정되어 있기 때문이다. 그러나 제안하는 프레임워크는 강체 추적뿐만 아니라 비강체 추적 또한 가능하다. 이를 위하여, 제안하는 프레임워크는 증강현실의 핵심 기술인 추적 엔진과 보다 넓은 확장성을 가지도록 추적하고자 하는 물체를 사전에 분석하고 실시간으로 모델 변형 정보를 추정하는 시뮬레이션 엔진으로 구성된다. 추적 엔진은 기본적으로 물체의 표면에 존재하는 특징점 정보를 이용하여 추적을 진행 하되, 비강체 추적을 위하여 시뮬레이션 엔진의 도움을 받는 형태로 구성된다. 시뮬레이션 엔진에서는 물체의 역학 파라미터를 추정하여 이를 추적을 진행 할 때, 추적 엔진의 물체 표면 특징점 정보를 이용하여 물체의 변형 정보를 추정한다. 또한 제안하는 프레임워크는 성능 상의 장점 외에도 오픈소스로 공개되기에 국내 증강현실 시장 성장에 발판이 될 것으로 기대된다.
실세계환경에서 물체를 추적하는 기술은 영상의 지속적인 변화 및 영상데이터 방대함과 처리속도의 문제로 인하여 해결하기 어려운 문제이다. 특히 해상과 같은 환경에서는 더욱 어려운 현실이다. 본 논문에서는 복잡한 환경에서 물체를 추적하고 탐지하기 위한 방법으로 자기조직화 신경망을 사용하여 구성하였다. 본 논문에서의 접근 방법은 코호넨의 자기 조직화 신경망 분석 기법과 영역확장 기법 및 에너지 최소화함수를 이용하여 물체 추적시스템을 구성하였다. 자기조직화 신경망은 하나의 프레임 내에서 이동하는 물체의 중심점을 탐지할 수 있다. 그리고 연속적인 영상에서 이전에 탐지되어진 뉴런의 위치를 이용하여 물체를 추적할 수 있다. 자기조직화 신경망을 이용한 물체 추적의 실험결과 다양한 환경의 변화에서도 물체의 추적이 가능함을 알 수 있었다.
과거의 이동로봇 시스템은 완전한 자율주행이 주된 목표였으며 그때의 영상정보는 단지 모니터링을 하는 보조적인 수단으로 사용되었다. 그러나 지금은 이동 물체의 추적, 대상 물체의 인식과 판별, 특징 추출과 같은 다양한 응용분야에서 영상정보를 이용하는 연구가 활발히 진행되고 있다 또한 제어 측면에서는 전통적인 제어기법으로는 해결하기 힘들었던 여러 가지 비선형적인 제어를 지능제어 방법을 통하여 많이 해결하곤 하였다. 그러한 지능제어에서 신경망을 많이 사용하기도 한다. 최근에는 신경망의 학습에 많이 사용하는 방법 중 강화학습이 많이 사용되고 있다. 강화학습이란 동적인 제어평면에서 시행착오를 통해, 목적을 이루기 위해 각 상황에서 행동을 학습하는 방법이다. 그러므로 이러한 강화학습은 수많은 시행착오를 거쳐 그 대응 관계를 학습하게 된다. 제어에 사용되는 제어 파라메타는 어떠한 상태에 처할 수 있는 상태와 행동들, 그리고 상태의 변화, 또한 최적의 해를 구할 수 있는 포상알고리즘에 대해 다양하게 연구되고 있다. 본 논문에서 연구한 시스템은 비젼시스템과 Strong Arm 보드를 이용하여 대상물체의 색상과 형태를 파악한 후 실시간으로 물체를 추적할 수 있게 구성하였으며, 또한 물체 이동의 비선형적인 경향성을 강화학습을 통하여 물체이동의 비선형성을 보다 유연하게 대처하여 보다 안정하고 빠르며 정확하게 물체를 추적하는 방법을 실험을 통하여 제안하였다.
본 논문에서는 움직이는 카메라로부터 획득한 연속영상에서 이동물체를 자동으로 검출하고 추적하는 시스템을 제안한다. 제안된 방법은 크게 이동물체 검출과 추적과정으로 나뉘어진다. 이동물체는 BBME(block-based motion estimation)와 DD(double difference)를 통합한 방법을 이용하여 검출된다. 검출된 이동물체는 히스토그램 백 프로젝션을 통하여 분할되며, 히스토그램 인터섹션과 XY-프로젝션을 사용하여 대상물체를 정합하고 추적된다. 본 논문에서는 컴퓨터 모의실험을 통하여 제안된 방법이 움직이는 카메라로부터 획득된 영상에서 이동물체를 검출하고 큰 오차 없이 추적함을 보였다.
본 논문은 급격한 컬러 변화를 보이는 물체를 추적하기 위해 새로운 알고리즘에 대해서 기술하였다. 이를 수행하기 위해 컬러기반의 추적 알고리즘인 Mean Shift를 개선하여 적용한다. 지존의 Mean Shift 알고리즘은 물체 추적을 위해 컬러 분포 정보를 설정한다. 하지만 초기의 컬러 분포 정보가 사라질 경우 물체 추적을 정확히 수행하기 힘들다는 문제점을 안고 있다. 본 논문에서는 이를 해결하기 위해 Mean Shift를 개선하여, 추적 대상의 컬러 정보를 반복적으로 업데이트하여 초기의 컬러 정보가 사라지더라도 추적이 가능하도록 개선하였다. 개선된 추적 알고리즘은 시간에 따라 초기의 컬러 분포 정보가 완전히 사라지더라도 실시간 추적이 가능하도록 구현하였다. 이를 입증하기 위해 본 논문의 실험에서는 실험적인 환경에서 급격한 컬러 변화를 보이는 간단한 문제의 추적과 실생활에서의 예를 함께 보여준다.
본 논문은 배경이 고정되지 않은 복잡한 동영상에서의 물체 추적을 위하여 다중 모델 색상 히스토그램 역투영(Multi Model Color Histogram Back-projection)방법을 제안한다. 색상 히스토그램 역투영(Color Histogram Back-projection)을 이용하면 카메라의 움직임 때문에 발생하는 배경의 변화에 관계없이 물체를 추적할 수 있다. 기존의 방법은 추적하려는 물체에 대해 하나의 모델만을 적용했기 때문에, 배경영역 색분포의 영향을 많이 받는다. 이를 해결하기 위해 다중 모델 색상 히스토그램 역투영 방법을 이용하였다. 이 방법은 추적하려는 물체에 대해 여러 개의 모델을 구하여 각각에 대해 색상 히스토그램 역투영을 수행한다 또한 역투영 이진 영상에서 물체의 위치를 결정하기 위한 수평, 수직 프로젝션 방법의 문제점을 레이블링(Labeling)을 사용하여 보완하였다.
본 논문은 움직임 추정기법 중의 하나인 차영상 분석 기법을 기반으로한 이동 물체 추적 시스템을 제안한다. 실세계와 같은 복잡한 환경에서의 적응성을 높이기 위해 동적인 배경 추출 방법을 제안하고, 이를 바탕으로한 차영상 분석 기법을 이용하여 이동 물체를 탐지한 후 개선된 인공신경망의 경쟁학습 모델인 ART2 학습알고리즘을 이용하여 추적한다. 또한 이동 물체의 평가도 값이 아닌 RGB 컬러정보를 이용한 물체의 특징 벡터를 구한다. 이러한 특징 벡터들은 이동 물체의 모양이나 명암의 변화를 반영한다. 이러한 정보의 변화에 적응성을 갖게 하기위해 개선된 ART2를 사용한다. 그리고 실제 환경에서 보행자를 탐지, 추적하는 실험 결과 Gray 영상보다 정확한 추적이 가능하였다.
스테레오 물체 추적을 위해서는 추적 물체의 현재 위치를 추출하는 것이 선행 되어야한다. 입력된 좌측 영상과 이전 프레임에서 얻은 윈도우 마스크(window mask)의 기준 영상간에 식 (1)의 MSE 알고리즘을 적용하였다. 여기에서 윈도우 마스크의 기준 영상은 초기에만 추적을 원하는 물체를 마스크로 잡아(locking) 초기화 시켜 주면, 이후에는 스스로 계속 갱신(update)하게 된다. (중략)
본 논문에서는 계층적 디지털 알고리즘과 광 BPEJTC를 이용하여 주시각을 제어함으로써 이동표적을 적응적으로 추적할 수 있는 새로운 광-디지털 스테레오 물체추적 시스템을 제안하였다. 즉, 제안된 시스템에서는 먼저, 순차적인 입력영상으로부터 배경정합을 통해 표적을 탐지하고 이어서, 영상 차분 필터, 논리곱 연산 및 모폴로지 필터를 이용하여 구성된 표적 투영마스크를 이용하여 표전물체를 영역화한 다음 최종적으로 광 BPEJTC(binary phase extraction joint transform correlator)를 이용하여 표전물체의 위치정보를 추출해 냄으로써 이를 이용한 실시간적 카메라 주시각 제어 및 물체추적이 가능한 새로운 광-디지털 스테레오 물체추적 알고리즘을 제시하였다. 또한, 본 논문에서 새로이 제안된 표적물체 추출 및 카메라 주시각 제어 알고리듬의 광학적 구현을 통해 적응적 스테레오 물체 추적시스템의 실시간적 구현 가능성을 제시하였다.
본 논문은 하나의 움직이는 카메라와 수시로 바뀌는 배경을 가진 환경 하에서 파라미터를 사용하지 않는 외곽선을 사용한 움직이는 물체의 외곽을 추적하고, 추적된 물체의 외곽을 다른 장면에서 가져온 배경으로 대체하여 추적물체를 제거하는 기법을 제안한다. 먼저 캐니 에지 이미지(map)를 수정하여 만들어 내고, 이들 에지들의 강도에 대한 정보를 LOD (Level-of-Detail)로 만든 결과 LOD 캐니 에지 이미지(map)을 생성한다. 이들 LOD 캐니 에지 이미지 화소에 대해 그래프를 사용한 경로 설정 방법을 사용한다. 이 작업으로 결정되는 외곽선을 이용하여 추적대상이 되는 물체를 다른 이미지에서부터 얻은 배경이미지로 대체함으로써 제거한다. 우리의 물체 추적을 위한 방법은 LOD 수정된 캐니에지 이미지를 위주로 이루어진다. 추가 에지 정보를 얻기 위해 LOD 계층에 따라서 자세한 외곽선 정보를 얻는다. 우리의 경로 설정 방법은 보다 강한 이미지 차에서 만들어진 에지 화소를 선호하는 것이다. 이 방법은 이전 외곽선 정보를 최소한으로 참고하기 때문에, 이전 외곽선 정보를 새로운 외곽선을 생성하는데 있어서 가중치를 사용 이전 외곽선을 포함시키는 방법에 비해 탁월하다. 외곽선 추적 후 추적 물체를 배경으로 대체하는데, 첫 이미지 배경은 이후에 나타나는 이미지로부터 추적 물체에 대해 가려진 배경정보를 가져오는 카메라 운동법이라 부르는 방법에 의하여 계산되어진다. 첫 프레임을 위한 배경 계산이 완료되면, 다음 이미지의 배경 계산은 첫 프레임의 배경에 의존한다. 본 논문에서 제시된 방법을 사용할 경우, 추적 물체의 형상 변화가 극심하지 않고, 카메라의 움직임이 매우 빠르지 않을 경우 성공적으로 추적할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.