• Title/Summary/Keyword: 물질순환모델

Search Result 108, Processing Time 0.024 seconds

The parameter investigation for the development of model to predict responses of vegetation to hydrological conditions (수문생태 모델의 개발을 위한 요소 검토)

  • Hong, Il;Lee, Jin-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1076-1080
    • /
    • 2007
  • 최근 국내에서는 하천변 생태계를 대상으로 생태구조 및 서식처 평가 등 많은 연구가 진행되었음에도 불구하고 생태적 변화를 예측하고 예측된 결과에 따라 생태복원 대책을 수립할 수 있는 연구는 현재까지 미흡하다고 볼 수 있으며, 이는 생태복원 연구에 있어 주요과제라고 할 수 있다. 이에 반해 유럽과 미국에서는 수문학적 서식처 조건에 따른 식생 반응 예측 등 수문생태 모형에 대한 연구가 꾸준히 이루어져 왔으며, 최근에는 습지, 홍수터 등을 대상으로 생태보전 복원분야에 널리 응용되고 있다. 본 연구에서는 국외의 수문생태모형 적용사례를 분석하여 국내 적용가능성 및 문제점에 대한 타당성을 제시하고자 하였다. 그 대상으로는 유역 내에 홍수량 분담을 위한 천변저류지를 적용하였으며, 의미상으로 홍수터(범람원), 습지 역시 해당 범위에 포함할 수 있다. 천변저류지는 홍수기와 비홍수기에 따라 활용 측면을 구분할 수 있으며, 이런 맥락에서 천변저류지의 수위변화는 식생 변화의 중요한 요소(factor)가 될 수 있다. 그 외 범람시기, 범람일수, 건조기간 등을 포함한 수문요소 역시 수문생태 모델의 예측 변수인 식생 성장에 영향을 미치게 된다. 이러한 수문/생태시스템의 상호관계를 활용하고 모형의 형태를 국내 식생에 대한 생리학적 특성에 맞게 변화시킬 수 있다면 국내 천변저류지에도 충분히 적용 가능할 것으로 판단된다. 또한 잠재적으로 식생 성장에 영향을 줄 수 있는 다양한 환경조건 예를 들면 영양물질, 토양구조, 토사 퇴적 등을 적용대상지 환경에 맞게 포함하거나 고려할 수 있다면 모형의 재현성을 더욱 높일 수 있을 것이다.의 기대효과를 가져올 수 있으리라 생각되며 분석된 인자들은 수달 서식지를 위한 하천정비의 기초자료에 유용할 것으로 보인다.따른 유량측정망을 구축하는 것이다.의 의사결정 지원 도구가 될 것이다. 따라서, 본 연구에서는 도시유역의 물순환 해석을 위한 일련의 과정, 즉 자료의 조사 및 취득에서부터 물순환 해석 모형을 이용한 정량적 현황파악, 물순환 개선 기법 및 평가를 수행함에 있어 주요 착안점 및 실무에서의 기술적 가이드를 제공하고자 하였으며, 보다 세밀한 도시유역의 물순환 해석을 위하여 우리나라와 일본에서 적용이 활발한 물리적 기반의 분포형 모형(WEP, SHER, SWMM)의 적용사례를 통하여 국내 도시하천의 물순환 해석에 활용함에 있어서의 실질적인 적용절차 등을 제시하고자 하였다. 한다.호강유역의 급격한 수질개선을 알 수 있다.世宗實錄) $\ulcorner$지리지$\lrcorner$(地理志)와 동년대에 동일한 목적으로 찬술되었음을 알 수 있다. $\ulcorner$경상도실록지리지$\lrcorner$(慶尙道實錄地理志)에는 $\ulcorner$세종실록$\lrcorner$(世宗實錄) $\ulcorner$지리지$\lrcorner$(地理志)와의 비교를 해보면 상 중 하품의 통합 9개소가 삭제되어 있고, $\ulcorner$동국여지승람$\lrcorner$(東國與地勝覽) 에서는 자기소와 도기소의 위치가 완전히 삭제되어 있다.

  • PDF

Milk Production of Dairy Cattle from Organic Farming in Germany and Development Trends in Korea (독일의 유기축산에 의한 젖소사육 현황과 무리나라의 발전 방향)

  • 류종원
    • Journal of Animal Environmental Science
    • /
    • v.8 no.1
    • /
    • pp.25-34
    • /
    • 2002
  • In view of increasing environmental pollution, the organic farming in animal production is becoming increasingly urgent. The problems of veterinary medicine have not diminished through the most dangerous epidemic diseases. Organic farming attempts to function in harmony with the environment. The first criterion of the organic farm is that the animal must be self-sustaining. Their food must be produced to a large extent on the farm. The position of ruminants in biological systems is determined by the fact that this group of farm animals is provided with a digestive system which optimizes the utilization of the products of gut microfloral fermentation. The cattle do not require large amounts of concentrate feeling nor gross ugly farm building for intensive rearing. The economic profitability of a cow depends. on the first instance, on the level of milk production and the number of lactations. The length of life is an important factor since the tilde to maturing is relatively high in a cow. The result is that dairy cows in organic farming have greater length of live, and produce more milk in their life time than the shorter lived high input cow. This paper. therefore, discussed the problems of modern cattle farming and development trends of organic farming in Germany and Korea.

  • PDF

A Study of Environment-friendly outer wall facilities for the improvement of port pollution (항내오염 개선을 위한 친환경 외곽시설에 관한 연구)

  • 김강민;강석형;유하상;김상훈
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.165-170
    • /
    • 2003
  • Due to the impermeability of outer wall facilities such a Breakwaters which dissipates the wave energy and keeps harbor tranquility, the water exchange can be worse and increased enclosed at the harbor. Recent trends of port development protect water quality and emphasize Water-Front, so the method which enhances the circulation of harbor waters and the dilution of the water pollutants are studied. The best improvement of water quality is a remove of pollutant source on land, but an enclosed port must be enhanced the tidal exchange. To this hence, the best improvement may be made on drain-route on the existing outer wall facilities. In this study, the numerical computations were carried out to predict the circulation of harbor waters and the tidal exchange in the polluted harbor(Samchonpo-guhang) located at the east coast of South Sea. Computational models adopting FDM(Finite Difference Method) were used here and were already verified from the previous studies and ocean survey. As a result of this study, the tidal exchange in Samchonpo-guhang before and after installation of drain-route is assessed.

  • PDF

Seasonal Circulation and Estuarine Characteristics in the Jinhae and Masan Bay from Three-Dimensional Numerical Experiments (3차원 수치모의 실험을 통한 진해·마산만의 계절별 해수순환과 염하구 특성)

  • JIHA KIM;BYOUNG-JU CHOI;JAE-SUNG CHOI;HO KYUNG HA
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.2
    • /
    • pp.77-100
    • /
    • 2024
  • Circulation, tides, currents, harmful algal blooms, water quality, and hypoxic conditions in Jinhae-Masan Bay have been extensively studied. However, these previous studies primarily focused on short-term variations, and there was limited detailed investigation into the physical mechanisms responsible for ocean circulation in the bays. Oceanic processes in the bays, such as pollutant dispersal, changes on a seasonal time scale. Therefore, this study aimed to understand how the circulation in Jinhae-Masan Bay varies seasonally and to examine the effects of tides, winds, and river discharges on regional ocean circulation. To achieve this, a three-dimensional ocean circulation model was used to simulate circulation patterns from 2016 to 2018, and sensitivity experiments were conducted. This study reveals that convective estuarine circulation develops in Jinhae and Masan Bays, characterized by the inflow of deep oceanic water from the Korea Strait through Gadeoksudo, while surface water flows outward. This deep water intrusion divides into northward and westward branches. In this study, the volume transport was calculated along the direction of bottom channels in each region. The meridional water exchange in the eastern region of Jinhae Bay is 2.3 times greater in winter and 1.4 times greater in summer compared to that of zonal exchange in the western region. In the western region of Jinhae Bay, the circulation pattern varies significantly by season due to changes in the balance of forces. During winter, surface currents flow southward and bottom currents flow northward, strengthening the north-south convective circulation due to the combined effects of northwesterly winds and the slope of the sea surface. In contrast, during summer, southwesterly winds cause surface seawater to flow eastward, and the elevated sea surface in the southeastern part enhances northward barotropic pressure gradient intensifying the eastward surface flow. The density gradient and southward baroclinic pressure gradient increase in the lower layer, causing a strong westward inflow of seawater from Gadeoksudo, enhancing the zonal convective circulation by 26% compared to winter. The convective circulation in the western Jinhae Bay is significantly influenced by both tidal current and wind during both winter and summer. In the eastern Jinhae Bay and Masan Bay, surface water flows outward to the open sea in all seasons, while bottom water flows inward, demonstrating a typical convective estuarine circulation. In winter, the contributions of wind and freshwater influx are significant, while in summer, the influence of mixing by tidal currents plays a major role in the north-south convective circulation. In the eastern Jinhae Bay, tidally driven residual circulation patterns, influenced by the local topography, are distinct. The study results are expected to enhance our understanding of pollutant dispersion, summer hypoxic events, and the abundance of red tide organisms in these bays.

Livestock Manure Nutrients Flow Analysis of Integrated Crop-Livestock Farming Model Reflecting the Regional Characteristics (지역특성을 고려한 경축순환농업 모형의 가축분뇨 양분 흐름분석)

  • Lee, Joon Hee;Choi, Hong Lim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.36-46
    • /
    • 2015
  • Integration of crop-livestock farming has been a problem-solving mode for abatement of environmental pollution and recovery of resources in recent years. The objectives of this study were 1) to suggest the customized integration of crop-livestock farming model reflecting the regional characteristics through in-depth analysis of case study and 2) to analyze the livestock nutrients flow in terms of three primary elements as nitrogen(N), phosphorous(P), and potassium(K). The personal interview and survey were carried out in 2012 for a total of 161 farms from four different regions(NS, NW, JJ, YC) in South Korea. The mass balance analysis was used to suggest and evaluate the models for two sites(JJ and YC). The results showed that NS and NW sites produced relatively more livestock manure than the sites of YC and JJ because of the regional differences in livestock numbers and urbanization. The models were suggested for the site JJ and site YC, and 'two track model(energy and resource recovery)' and 'dispersal type model' were assigned respectively. For the nutrient flows, the releasing P and K with new models had increased up to 7%, while N release had decreased down to 15% in both YC and JJ sites compared to the present treatment system. Estimated value showed that there was oversupply of N (719 ton/yr) and $P_2O_5$ (1,269 ton/yr) in YC and deficiency of N (671 ton/yr) and excessive $P_2O_5$ (32 ton/yr) in JJ respectively. Therefore, P runoff has to be considered an eutrophication occurs in rural small stream when an integration of crop-livestock farm system is applied into both sites.

Application of SWAT model for Cheonggecheon watershed (청계천 유역에 대한 SWAT 모형의 적용)

  • Chang, Cheol Hi;Kim, Hyeon Jun;Noh, Seong Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1072-1076
    • /
    • 2004
  • 도시 개발에 의해 우수의 불투수지역 확대, 하천부지의 축소, 산림 및 유수지의 감소 등이 급속히 진행되어 하천유량의 변화, 지하수위의 저하, 용수의 고갈, 생태계의 파괴 등이 발생되어 왔다. 도시지역은 도시형 수해발생, 갈수시의 급수안전도 지하, 평시 하천유량의 감소, 공공수역의 수질악화, 지하수 오열 등 여러 가지 문제에 직면하고 있다. 이러한 문제들은 서울의 경우도 예외는 아니며 청계천 복원 사업과 더불어 그동안 방치되었던 도시유역의 물순환 체계를 분석할 필요가 있다. 본 연구에서는 SWAT 모형을 이용하여 도시하천 유역의 물순환을 해석하였다. SWAT모형은 미국 농무성 농업연구소(Agricultural Research Service, ARS)에서 개발된 모델로서, 내규모의 복잡한 유역에서 장기간에 걸친 다양한 종류의 토양과 토지이용 및 토지관리 상태에 따른 물과 유사 및 농업화학물질의 거동에 대한 토지관리 방법의 영향을 예측하기 위해 개발되었다. SWAT 모형은 물리적 이론에 근거한 연속모형으로 준분포형 (Semi-Distributed) 모형이다. 본 연구는 도시하천 유역의 물순환체계 변동을 고려한 물순환 정상화 기술을 개발하기 위한 기초단계로서, 청계천 유역에 내해 모형을 적용하였다. 청계천은 중랑천의 제1지류인 지방2급 하천으로 유역면적 $50.96km^2$, 유로연장 13.75km이며, 2003년 7월부터 ,5.9km의 본류구간에 대한 복원공사가 진행 중이다. 적용유역의 수문${\cdot}$기상${\cdot}$지하수 자료는 1993널 1월 1일 $\~$ 2002년 12월 31일까지의 서울 기상청 자료를 이용하였으며, 지형, 토양, 토지이용 자료는 기존에 구축된 GIS 자료를 이용하였다. 모형 적용결과, 도시하천 유역에 대한 SWAT 모형의 적용성을 확인할 수 있었으며 유역의 물순환계를 구성하는 강수, 지표수, 토양수, 지하수 및 하천수 등의 상호 관계 분석을 통해 장기간의 유역 물순환체계 변화를 분석할 수 있었다.

  • PDF

Introduction plan of future integrated water circulation management system using LID facility model verification (LID시설 모델검증을 활용한 미래형 통합 물순환관리시스템 도입방안)

  • Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.67-73
    • /
    • 2021
  • As the impermeable area increases due to urbanization and industrialization, the influence of non-point pollutants caused by rainfall runoff on the water system is increasing. In the past, the best management practices(BMP) were used a lot to manage non-point pollutants, but recently, technology that naturally treats them through LID (Low Impact Development) technology is widely used. In this study, various rainfall events were simulated through the SWMM model based on the data of rainfall monitoring in bioretention among natural facilities. The characteristic of LID modeling research is that it is difficult to build accurate modeling data with short-term data because real data is the result obtained through natural facilities, and it is difficult to implement an accurate model. In this study, the data monitored for 3 years It is significant in that it has built a precise model. The actual data monitored a total of 18 times was simulated, and the inflow and outflow and the removal efficiency of five pollutants were simulated. As a result of performing the performance evaluation, most of the 7 items showed excellent indicators, and the TN and TP showed relatively low simulation performance. In the future, it is expected that Korea will introduce an integrated water management system in which the water supply system and the sewage system are substantially integrated and operated. Therefore, the results of this study are considered to play an important role in the initial stage of rainfall management in the future integrated water management system, and the extent of rainfall runoff reduction and pollutant reduction in the expected installation area can be predicted in advance. This is expected to prevent overdesign of bioretention.

A Mechanism of AMOC Decadal Variability in the HadGEM2-AO (HadGEM2-AO 모델이 모의한 AMOC 수십 년 변동 메커니즘)

  • Wie, Jieun;Kim, Ki-Young;Lee, Johan;Boo, Kyung-on;Cho, Chunho;Kim, Chulhee;Moon, Byung-kwon
    • Journal of the Korean earth science society
    • /
    • v.36 no.3
    • /
    • pp.199-209
    • /
    • 2015
  • The Atlantic meridional overturning circulation (AMOC), driven by high density water sinking around Greenland serves as a global climate regulator, because it transports heat and materials in the climate system. We analyzed the mechanism of AMOC on a decadal time scale simulated with the HadGEM2-AO model. The lead-lag regression analysis with AMOC index shows that the decadal variability of the thermohaline circulation in the Atlantic Ocean can be considered as a self-sustained variability. This means that the long-term change of AMOC is related to the instability which is originated from the phase difference between the meridional temperature gradient and the ocean circulation. When the overturning circulation becomes stronger, the heat moves northward and decreases the horizontal temperature-dominated density gradients. Subsequently, this leads to weakening of the circulation, which in turn generates the anomalous cooling at high latitudes and, thereby strengthening the AMOC. In this mechanism, the density anomalies at high latitudes are controlled by the thermal advection from low latitudes, meaning that the variation of the AMOC is thermally driven and not salinity driven.

다공성 물질에 의한 열재순환 화염에 관한 실험적 연구 I

  • 유영돈;민대기;신현동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1113-1120
    • /
    • 1988
  • This paper presents the results of an experimental investigation on one dimensional excess enthalpy flame formed in a porous block. The investigation is undertaken in order to further the physical understanding of internal heat recirculation from reaction zone to unburned mixture. Two porous blocks are placed at both sides of combustion block to control the temperature distribution in the combustion block by means of radiation heat transfer. Mean temperature measurement reveals the general nature of the reaction zone in the porous material. It is conformed that the temperature of reaction zone exceeds the adiabatic flame temperature and the flame is stabilized at the out range of flammibility limit derived by conventional burner.

A Study on the Inflowing Pollution Load and Material Budgets in Hampyeong Bay (함평만의 유입오염부하량 및 물질수지에 관한 연구)

  • Kim, Jong-Gu;Jang, Hyo-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • In this paper, an analysis of the inflowing pollution load of the rivers in Hampyeong bay showed the average organic matter pollution loads of BOD, COD, and TOC to be 79.7 kg-BOD/day, 144.06 kg-COD/day, and 93.0 kg-TOC/day, respectively. The inflowing organic matter pollution load was the heaviest in Sonbul dike, followed by Jupo bridge and Yangman complex. With regard to season, the load characteristics were outstanding in July, the rainy period in the summer. The average inflowing pollution loads of nutrients were 20.9 kg-DIN/day, 17.1 kg-DIP/day, 148 kg-TN/day, and 37.4 kg-TP/day A comparison of the inflowing nutrients loads for each river showed the load to be the heaviest in Yangman complex, followed by Baegok bridge and Jupo bridge. In the experiment on the material budgets of Hampyeong bridge conducted using a box model, the detention time of fresh water was found to be 52.4 days, with the bay displaying the characteristics of a so dissolved inorganic nitrogen (DIN) in the nutrients material budgets, ${\Delta}DIN$ values were found to be negative, indicating the tendency of consumption and open sea leak by photosynthesis to be higher than the nitrogen that flowed in. As for dissolved inorganic phosphorus (DIP), ${\Delta}DIP$ showed positive values, indicating a tendency for accumulation as the supply through organic matter decomposition, elution load of sediments, and inflowing load of the river turned out to be higher than the consumption by phytoplankton and outflow to open sea.