• Title/Summary/Keyword: 물성 추정

Search Result 305, Processing Time 0.021 seconds

Prediction of Settlement of Vertical Drainage-Reinforced Soft Clay Ground using Back-Analysis (역해석 기법에 근거한 수직배수재로 개량된 연약점토지반의 침하예측)

  • Park, Hyun Il;Kim, Yun Tae;Hwang, Daejin;Lee, Seung Rae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.229-238
    • /
    • 2006
  • Observed field behaviors are frequently different from the behaviors predicted in the design state due to several uncertainties involved in soil properties, numerical modeling, and error of measuring system even though a sophisticated numerical analysis technique is applied to solve the consolidation behavior of drainage-installed soft deposits. In this study, genetic algorithms are applied to back-analyze the soil properties using the observed behavior of soft clay deposit composed of multi layers that shows complex consolidation characteristics. Utilizing the program, one might be able to appropriately predict the subsequent consolidation behavior from the measured data in an early stage of consolidation of multi layered soft deposits. Example analyses for drainage-installed multi-layered soft deposits are performed to examine the applicability of proposed back-analysis method.

Consideration of the Relationship between Independent Variables for the Estimation of Crack Density (균열밀도 산정을 위한 독립 변수 간의 관계 고찰)

  • Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.137-144
    • /
    • 2024
  • The purpose of this paper is to analyze the significance of independent variables in estimating crack density using machine learning algorithms. The algorithms used were random forest and SHAP, with the independent variables being compressional wave velocity, shear wave velocity, porosity, and Poisson's ratio. Rock samples were collected from construction sites and processed into cylindrical forms to facilitate the acquisition of each input property. Artificial weathering was conducted twelve times to obtain values for both independent and dependent variables with multiple features. The application of the two algorithms revealed that porosity is a crucial independent variable in estimating crack density, whereas shear wave velocity has a relatively low impact. These results suggested that the four physical properties set as independent variables were sufficient for estimating crack density. Additionally, they presented a methodology for verifying the appropriateness of the independent variables using algorithms such as random forest and SHAP.

Petrological study and Provenance estimation on the stone materials from the Jeolla Usuyeong Rampart, the Republic of Korea (전라우수영 성곽 부재에 대한 암석학적 연구 및 산지추정)

  • Park, Sang Gu;Kim, Sung Tae;Kim, Jun Hyeok;Kim, Seon Hyang;Baek, Ye ram;Kim, Jae Hwan;Jwa, Yong-Joo
    • Journal of the Korean earth science society
    • /
    • v.39 no.3
    • /
    • pp.250-259
    • /
    • 2018
  • We investigated the petrological features of the stone materials used in the Jeolla Usuyeong rampart and estimated their provenance through the geological survey. The Jeolla Usuyeong was designated as a historic site (No. 535) on 2016. Since the remaining rampart is less than 15%, it is necessary to make conservation on it. In this study, we discriminated the stone materials used for the rampart according to their petrographic characteristics and estimated the volume proportion of each stone by the rock type. Also, we measured the whole-rock magnetic susceptibility. The petrographic features of the stones in the rampart were compared with those in the vicinity by their mineral composition and texture. The stone materials of the rampart mainly consist of the tuff, lapilli tuff, and lapilli stone. Among these three kinds of rocks, lapilli tuff is quantitatively the most abundant (60.3%), the next is tuff (34.7%), and lapilli stone (2.5%) shows the least amount. The whole-rock magnetic susceptibility of the tuffaceous rocks can be divided by the value of $1.0{\times}10^{-3}$ SI unit. Also, the compressive strength of tuff exhibits about 156 MPa, which is adequate to reuse for the repairing work. Petrological comparisons between stone materials and outcrop rocks distributed around the Hwawon peninsula leads to a conclusion that the stone materials of the rampart are likely to have been delivered from the Dongoeri and Sindeok-ri. Judging from the results of the comparison on the frequency of use and physical properties among the tuffaceous rocks, tuff is considered to suitable for restoring the rampart.

Multi-station joint inversion of receiver function and surface-wave phase velocity data for exploration of deep sedimentary layers (심부 퇴적층 탐사를 위한 수신함수와 표면파 위상속도를 이용한 다측점 자료의 복합 역산)

  • Kurose, Takeshi;Yamanaka, Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • In this study, we propose a joint inversion method, using genetic algorithms, to estimate an S-wave velocity structure for deep sedimentary layers from receiver functions and surface-wave phase velocity observed at several sites. The method takes layer continuity over a target area into consideration by assuming that each layer has uniform physical properties, especially an S-wave velocity, at all the sites in a target area in order to invert datasets acquired at different sites simultaneously. Numerical experiments with synthetic data indicate that the proposed method is effective in reducing uncertainty in deep structure parameters when modelling only surface-wave dispersion data over a limited period range. We then apply the method to receiver functions derived from earthquake records at one site and two datasets of Rayleigh-wave phase velocity obtained from microtremor array surveys performed in central Tokyo, Japan. The estimated subsurface structure is in good agreement with the results of previous seismic refraction surveys and deep borehole data. We also conclude that the proposed method can provide a more accurate and reliable model than individual inversions of either receiver function data only or surface-wave dispersion data only.

Numerical Simulation of Lithium-Ion Batteries for Electric Vehicles (전기 자동차용 리튬이온전지 개발을 위한 수치해석)

  • You, Suk-Beom;Jung, Joo-Sik;Cheong, Kyeong-Beom;Go, Joo-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.649-656
    • /
    • 2011
  • A model for the numerical simulation of lithium-ion batteries (LIBs) is developed for use in battery cell design, with a view to improving the performances of such batteries. The model uses Newman-type electrochemical and transfer $theories^{(1,2)}$ to describe the behavior of the lithium-ion cell, together with the Levenberg-Marquardt optimization scheme to estimate the performance or design parameters in nonlinear problems. The mathematical model can provide an insight into the mechanism of LIB behavior during the charging/discharging process, and can therefore help to predict cell performance. Furthermore, by means of least-squares fitting to experimental discharge curves measured at room temperature, we were able to obtain the values of transport and kinetic parameters that are usually difficult to measure. By comparing the calculated data with the life-test discharge curves (SB LiMotive cell), we found that the capacity fade is strongly dependent on the decrease in the reaction area of active materials in the anode and cathode, as well as on the electrolyte diffusivity.

Thermophysical Properties of the Soybean Curd and Prediction of its Thermal Conductivity 1 Measurement of Thermophysical Properties of the Soybean Curd (두부의 전열물성 및 유효열전도도의 추정 1. 두부의 전열물성의 추정)

  • KONG Jai-Yul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.211-218
    • /
    • 1982
  • The specific heat capacity and density of soybean oil and soy protein composing of the soybean curd were measured between $30^{\circ}C\;and\;-40^{\circ}C$. The thermal conductivity of soybean oil was measured to be 0.160 and 0.140, $W/m{\cdot}K$ at unfrozen and frozen states, respectively. The effective thermal conductivity of the soybean curd depended not only on its water content but also on its fat and protein contents.

  • PDF

Analysis of Co-relationship between Rock Mass Grade by RMR and Estimation Method of Rock Deformation Modulus by Suggested Formulas (RMR 분류에 의한 암반등급과 제안식에 의한 암반 변형계수 추정기법의 상관관계 분석)

  • Do, Jongnam;Lee, Jinkyu;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.13-26
    • /
    • 2012
  • The deformation modulus of rock masses is a very important design factor for the computation of stability of tunnels and their support systems. Several empirical formulas to estimate the deformation modulus using simple rock classification methods such as RQD or RMR are widely used because field tests to evaluate the deformation modulus are very expensive and time consuming work. However, these formulas can be depended on experiences from the characteristics of local sites in each country. So it is possible that there might be limitations to estimate appropriate deformation modulus in South Korea using the empirical formulas. Therefore, in this study, the applicability of empirical formulas was analyzed by comparing estimated value with the measured value from eight sites in South Korea. The results show that the estimated value based on the empirical formulas partially have tendency to overestimate. Especially, in case of sedimentary rocks, it was too difficult to apply to the empirical formulas because there was no relation ship between estimated value and measured value. For these reasons, additional data from many tests and accurate analyses are necessary to evaluate the estimation method for the deformation modulus considering the local characteristics of rock masses.

A Study on the Correlation Between Electrical Resistivity and Rock Classification (전기비저항과 암반분류의 상관관계에 대한 고찰)

  • Kwon, Hyoung-Seok;Hwang, Se-Ho;Baek, Hwan-Jo;Kim, Ki-Seog
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.350-360
    • /
    • 2008
  • Electrical resistivity is one of physical property of the earth and measured by electrical resistivity survey, electrical resistivity logging and laboratory test. Recently, electrical resistivity is widely used in determination of rock quality in support pattern design of road and railway tunnel construction sites. To get more reliable rock quality data from electrical resistivity, it needs a lot of test and study on correlation of resistivity and rock quality. Firstly, we did rock property test in laboratory, such as P wave velocity, Young's modulus, uniaxial compressive strength (UCS) and electrical resistivity. We correlate each test results and we found out that electrical resistivity has highly related to P wave velocity, Young's modulus and UCS. Next, we accomplished electrical resistivity survey in field site and carried out electrical resistivity logging at in-situ area. We also performed rock classification, such as RQD, RMR and Q-system and we correlate electrical resistivity to RMR data. We found out that electrical resistivity logging data are highly correlate to RMR. Also we found out that electrical resistivity survey data are lower than electrical resistivity logging data when there are faults or fractures. And it cause electrical resistivity survey data to lowly correlate to RMR.

Prediction of Ground Thermal Properties from Thermal Response Test (현장 열응답 시험을 통한 지중 열물성 추정)

  • Yoon, Seok;Lee, Seung-Rae;Kim, Young-Sang;Kim, Geon-Young;Kim, Kyungsu
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.5-14
    • /
    • 2016
  • The use of geothermal energy has increased for economically and environmentally friendly utilization, and a geothermal heat pump (GSHP) system for space heating and cooling is being used widely. As ground thermal properties such as ground thermal conductivity and ground thermal diffusivity are substantial parameters in the design of geothermal heat pump system, ground thermal conductivity should be obtained from in-situ thermal response test (TRT). This paper presents an experimental study of ground thermal properties of U and 2U type ground heat exchangers (GHEs) measured by TRTs. The U and 2U type GHEs were installed in a partially saturated dredged soil deposit, and TRTs were conducted for 48 hours. A method to derive the thermal diffusivity as well as thermal conductivity was proposed from a non-linear regression analysis. In addition, remolded soil samples from different layers were collected from the field, and soil specimens were reconstructed according to the field ground condition. Then equivalent ground thermal conductivity and ground thermal diffusivity were calculated from the lab test results and they were compared with the in-situ TRT results.

A Study on Manufacturing Method of Standard Void Specimens for Non-destructive Testing in RFI Process and Effect of Void on Mechanical Properties (RFI 공정 부품 비파괴검사용 표준 기공률 시편 제조 방법 및 기공률에 따른 기계적 물성 영향에 대한 연구)

  • Han, Seong-Hyeon;Lee, Jung-Wan;Kim, Jung-Soo;Kim, Young-Min;Kim, Wee-Dae;Um, Moon-Kwang
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.395-402
    • /
    • 2019
  • The RFI process is an OoA process that fiber mats and resin films are laminated and cured in a vacuum bag. In case that resin film is insufficient to fill empty space in fibers, it makes void defect in composites and this void decrease mechanical properties of the composites. For this reason, non-destructive testing is usually used to evaluate void of manufactured composites. So, in this study, a manufacturing method of standard void specimens, which are able to be used as references in non-destructive testing, was proposed by controlling resin film thickness in the RFI process. Also, a fiber compaction test was proposed as a method to set the resin film thicknesses depending on target voids of manufacturing panels. The target void panels of 0%, 2%, and 4% were made by the proposed methods, and signal attenuation depending on void was measured by non-destructive testing and image analysis. In addition, voids of specimens for tensile, in-plane, short beam and compressive tests were estimated by signal attenuation, and mechanical properties were evaluated depending on the voids.