• Title/Summary/Keyword: 물리 모델

Search Result 2,267, Processing Time 0.027 seconds

An intercomparison study between optimization algorithms for parameter estimation of microphysics in Unified model : Micro-genetic algorithm and Harmony search algorithm (통합모델의 강수물리과정 모수 최적화를 위한 알고리즘 비교 연구 : 마이크로 유전알고리즘과 하모니 탐색 알고리즘)

  • Jang, Jiyeon;Lee, Yong Hee;Joo, Sangwon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.79-87
    • /
    • 2017
  • The microphysical processes of the numerical weather prediction (NWP) model cover the following : fall speed, accretion, autoconversion, droplet size distribution, etc. However, the microphysical processes and parameters have a significant degree of uncertainty. Parameter estimation was generally used to reduce errors in NWP models associated with uncertainty. In this study, the micro- genetic algorithm and harmony search algorithm were used as an optimization algorithm for estimating parameters. And we estimate parameters of microphysics for the Unified model in the case of precipitation in Korea. The differences which occurred during the optimization process were due to different characteristics of the two algorithms. The micro-genetic algorithm converged to about 1.033 after 440 times. The harmony search algorithm converged to about 1.031 after 60 times. It shows that the harmony search algorithm estimated optimal parameters more quickly than the micro-genetic algorithm. Therefore, if you need to search for the optimal parameter within a faster time in the NWP model optimization problem with large calculation cost, the harmony search algorithm is more suitable.

Gravity Potential Comparative Analysis around Korean Peninsula by EGM96 and EIGEN-CG01C Models (EGM96와 EIGEN-CG01C 모델에 의한 한반도 주변의 중력포텐셜 비교분석)

  • Yu, Sang-Hoon;Kim, Chang-Hwan;Min, Kyung-Duck
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.261-266
    • /
    • 2005
  • According to development of satellite geodesy, gravity potential models which have high accuracy and resolution were released. Using the EIGEN-CG01C model based on low orbit satellite data such as CHAMP and GRACE and the EGM96 model, geoid and gravity anomaly were calculated and compared. The study area is located at $123^{\circ}{\sim}132^{\circ}$ E, $33^{\circ}{\sim}43^{\circ}$ including Korea. Comparing two models, very high correlation more than 0.90 in geoid and gravity anomaly was observed, but in amplitude analysis the EIGEN-CG01C model have higher amplitude in high frequency area. Gravity anomaly calculated with both models shows a little difference in North Korea and some coast area of the Yellow sea. Through power spectrum analysis, residual anomaly that can be used in large scale structure or underground resources survey was calculated.

  • PDF

Three-Dimensional Water Quality Modeling of Chinhae Bay (진해만의 3차원 수질 모델링)

  • 김차겸;이필용
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • A three-dimensional hydrodynamic-ecosystem model was developed and applied to Chinhae Bay which is located in the southeastern sea of Korea. The model includes a three-dimensional hydrodynamic model and an eutrophication model, and the model operates on the same grid system. The agreement between predicted and measured results is reasonably encouraging. The concentrations of the calculated COD, DIN and DIP are appeared to be very high due to the phytoplankton production and the wastewater input in the northern part of Chinhae Bay. Anoxic and hypoxic water masses in the bottom layer occur in the northern part of the bay due to the excess loading of wastewater and strong stratification, and in the western inner part of the bay due to high oxygen consumption in densely populated aquaculturing facilities. DO concentration contours show parallel to the bay entrance line, which means the importance of supplying DO by physical process from the mouth of the bay. Although both the hydrodynamic and biochemical processes play important role to form the hypoxic waters in the bottom of the inner bay, it is suggested that the hydrodynamic conditions such as the vertical and the horizontal eddy diffusivity are primarily important factors.

  • PDF

Inversion of Small Loop EM Data by Main-Target Emphasizing Approach (주 대상체 강조법에 의한 소형루프 전자탐사 자료의 역산)

  • Cho, In-Ky;Kang, Mi-Kyung;Kim, Ki-Ju
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.299-303
    • /
    • 2006
  • Geologic noise, especially located at shallow depth, can be a great obstacle in the interpretation of geophysical data. Thus, it is important to suppress geologic noise in order to accurately detect major anomalous bodies in the survey area. In the inversion of geophysical data, model parameters at shallow depth, which have small size and low contrast of physical property, can be regarded as one of geologic noise. The least-squares method with smoothness constraint has been widely used in the inversion of geophysical data. The method imposes a big penalty on the large model parameter, while a small penalty on the small model parameter. Therefore, it is not easy to suppress small anomalous boies. In this study, we developed a new inversion scheme which can effectively suppress geologic noise by imposing a big penalty on the slowly varying model parameter and a small penalty on the largely varying model parameter. We call the method MTE (main-target emphasizing) inversion. Applying the method to the inversion of 2.5D small loop EM data, we can ensure that it is effective in suppressing small anomalous boies and emphasizing major anomalous bodies in the survey area.

Development of a numerical modelling technique for evaluation of a long-term chemical deterioration of tunnel shotcrete lining (터널 숏크리트 라이닝의 장기 화학적 열화 손상 평가를 위한 수치 모델링 기법 개발)

  • Shin, Hyu-Soung;Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.299-307
    • /
    • 2007
  • In this study, a new concept for simulating a physical damage of tunnel shotcrete lining due to a long-term chemical deterioration has been proposed. It is known that the damage takes place mainly by internal cracks, reduction of stiffness and strength, which results mainly from volume expansion of the lining and corrosion of cement materials, respectively. This damage mechanism of shotcrete lining appears similar in most kinds of chemical reactions in tunnels. Therefore, the mechanical deterioration mechanism induced by a series of chemical reactions was generalized in this study and mathematically formulated in the framework of thermodynamics. The numerical model was implemented to a 3D finite element code, which can be used to simulate behaviour of tunnel structures undergoing external loads as well as chemical deterioration in time. A number of illustrative examples were given to show a feasibility of the model in tunnel designs.

  • PDF

Inversion of Resistivity Tomography Data Using EACB Approach (EACB법에 의한 전기비저항 토모그래피 자료의 역산)

  • Cho In-Ky;Kim Ki-Ju
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.129-136
    • /
    • 2005
  • The damped least-squares inversion has become a most popular method in finding the solution in geophysical problems. Generally, the least-squares inversion is to minimize the object function which consists of data misfits and model constraints. Although both the data misfit and the model constraint take an important part in the least-squares inversion, most of the studies are concentrated on what kind of model constraint is imposed and how to select an optimum regularization parameter. Despite that each datum is recommended to be weighted according to its uncertainty or error in the data acquisition, the uncertainty is usually not available. Thus, the data weighting matrix is inevitably regarded as the identity matrix in the inversion. We present a new inversion scheme, in which the data weighting matrix is automatically obtained from the analysis of the data resolution matrix and its spread function. This approach, named 'extended active constraint balancing (EACB)', assigns a great weighting on the datum having a high resolution and vice versa. We demonstrate that by applying EACB to a two-dimensional resistivity tomography problem, the EACB approach helps to enhance both the resolution and the stability of the inversion process.

Extraction of Cole-Cole Parameters from Time-domain Induced Polarization Data (시간영역 유도분극 자료로부터 Cole-Cole 변수 산출)

  • Kim, Yeon-Jung;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.164-170
    • /
    • 2021
  • Frequency-domain and time-domain induced polarization methods can provide spectral information about subsurface media. Analysis of spectral characteristics has been studied mainly in the frequency-domain, however, time-domain induced polarization research has recently become popular. In this study, assuming a homogeneous half-space model, an inversion method was developed to extract Cole-Cole parameters from the measured secondary potential or electrical resistivity. Since the Cole-Cole parameters of chargeability, time constant, and frequency index are not independent of each other, various problems, such as slow convergence rate, initial model problem, local minimum problem, and divergence, frequently occur when conventional nonlinear inversion is applied. In this study, we developed an effective inversion method using the initial model close to the true model by introducing a grid search method. Finally, the validity of the developed inversion method was verified using inversion experiments.

Spectral Inversion of Time-domain Induced Polarization Data (시간영역 유도분극 자료의 Cole-Cole 역산)

  • Kim, Yeon-Jung;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.171-179
    • /
    • 2021
  • We outline a process for estimating Cole-Cole parameters from time-domain induced polarization (IP) data. The IP transients are all inverted to 2D Cole-Cole earth models that include resistivity, chargeability, relaxation time, and the frequency exponent. Our inversion algorithm consists of two stages. We first convert the measured voltage decay curves into time series of current-on time apparent resistivity to circumvent the negative chargeability problem. As a first step, a 4D inversion recovers the resistivity model at each time channel that increases monotonically with time. The desired intrinsic Cole-Cole parameters are then recovered by inverting the resistivity time series of each inversion block. In the second step, the Cole-Cole parameters can be estimated readily by setting the initial model close to the true value through a grid search method. Finally, through inversion procedures applied to synthetic data sets, we demonstrate that our algorithm can image the Cole-Cole earth models effectively.

Examination of Heat Budget Model for Urban Thermal Environment Evaluation (도심지의 열환경 평가를 위한 열수지 모델의 검증)

  • 김상백;염향희;권병혁;김연희;오성남
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.504-505
    • /
    • 2003
  • 국지규모의 기상해석을 위한 기존의 방법은 중규모 모델로부터 down-nesting에 의한 방법으로 모델의 해상도를 향상시켜 기상장을 해석하는 것이 일반적이다(Clark and Farley, 1984). 그러나, 이 방법은 단지 물리적인 격자구조만을 향상시킨 것으로 근본적인 모델 내부 구조의 향상을 가져온 것은 아니다. 따라서, 다양한 토지 피복이 혼재해 있는 도심지를 대상으로 하는 고해상도의 국지기상 모델에 대하여 계산시간과 정확성을 고려한 효율적인 지표면 열수지 모델의 구축이 요구되고 있다. (중략)

  • PDF

Development of a Forecasting Model for Oxidants (광양만권 옥시단트(Ox) 예측 모델의 개발)

  • 이상득;산구극인;근등명;정일현
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.183-184
    • /
    • 2000
  • 종합적인 오존대책을 구축하기 위해서는 광화학 옥시단트의 생성물리ㆍ화학과정 및 생물기원(자연발생원) 탄화수소의 영향을 고려한 3차원 광화학반응 모델의 구축이 가장 절실하다. 특히, 광화학 옥시단트는 국지적인 순환(해륙풍)및 혼합층에 의해 지배되기 때문에 지형을 고려한 3차원 기상장 수치모델(도시규모)과 광화학을 포함한 농도장(광화학반응 모델) 모델에 의한 대상지역의 시간적, 공간적인 오존농도 분포를 재현할 수 있는 모델 개발이 필요하다. (중략)

  • PDF