Fault detection in seismic data is well suited to the application of machine learning algorithms. Accordingly, various machine learning techniques are being developed. In recent studies, machine learning models, which utilize synthetic data, are the particular focus when training with deep learning. The use of synthetic training data has many advantages; Securing massive data for training becomes easy and generating exact fault labels is possible with the help of synthetic training data. To interpret real data with the model trained by synthetic data, the synthetic data used for training should be geologically realistic. In this study, we introduce a method to generate realistic synthetic seismic data. Initially, reflectivity models are generated to include realistic fault structures, and then, a one-way wave equation is applied to efficiently generate seismic stack sections. Next, a migration algorithm is used to remove diffraction artifacts and random noise is added to mimic actual field data. A convolutional neural network model based on the U-Net structure is used to verify the generated synthetic data set. From the results of the experiment, we confirm that realistic synthetic data effectively creates a deep learning model that can be applied to field data.
The ecological health, based on the Index of Biological Integrity (IBI) and Qualitative Habitat Evaluation Index (QHEI) was evaluated in 10 stream sites of Southern Han River. Eleven parameters of 12 parameters (Karr 1981) were modified for the application of regional Korean circumstance. The ecological health, based on IBI grade, was in "good condition" and the IBI score ranged from 33 to 47. Nine parameters of the original 12-parameter metrics in QHEI model (Plafkin et al. 1989) were applied in the habitat assessment. The mean QHEI model values were judged as "partially supporting" and ranged from 75 (non-supporting) to 109 (supporting). Comparative analyses revealed that values of IBI and QHEI models were greater in Gj stream than Ig- and Dn streams. The analysis of fish compositions showed that the proportions of insectivore, omnivore, and carnivore were 61.9%, 19%, and 9.5%, respectively. According to tolerance guild analysis, sensitive species and tolerant species were 76.1% and 4.7%, respectively, indicating a healthy trophic state in terms of food chain. The analysis by habitat guild type indicated that riffle benthic species dominated (57.1%) when compared to water column species (28.5%). The introduced species and individuals with diseases or external abnormality were not observed. Overall, the model values of IBI and QHEI suggested that the ecological health was maintained well in this upstream region.
"시스템 식별(system identification)"이란 신호처리(signal processing)의 한 분야로서, 제어분야에서는, 제어시스템 설계 시 요구되는 제어대상 플랜트(plant)의 수학적 모델을 실제 시스템의 입력과 출력데이터를 활용하여 얻기 위한 필요한 체계적인 절차들을 제공해준다. 본 기법은 물리적 또는 화학적 기초원리(first principles)로부터 시스템 모델을 얻기가 어렵거나 매우 복잡한 경우에 주로 쓰이고 있으며, 이때 따라 산업현장에서도 점차 그 역할이 중요해지고 있다. 제어의 다른 분야와 유사하게 이 분야 또한 매우 수학적이어서 제어로봇시스템 학회지의 이번 호부터 총 4회에 걸쳐서 이 분야의 가장 근본적이며 실제적인 이론과 적용방법 들을 간단한 예제와 함께 다룰 계획이다. 첫 번째 순서로서 이번 호에서는 시스템 식별분야에 대한 빠른 이해를 위해 단순한 정적 그리고 동적인 시스템 예제에 대하여 최소자승법(least squares method)을 통한 시스템 파라미터 추정기법을 설명하며, 시스템 식별기법의 종류 그리고 시스템 식별 수행 시 반드시 거쳐야 단계와 절차를 소개한다.
Superelastic shape memory alloys (SMAs) are metallic materials that can automatically recover to their original condition without heat treatment only after the removal of the applied load. These smart materials have been wildly applied instead of steel materials to the place where large deformation is likely to concentrate. In spite of many advantages, superelastic SMA materials have been limited to use in the construction filed because there is lack of effort and research involved with the development of the material model, which is required to reproduce the behavior of superelastic SMA materials. Therefore, constitutive material models as well as algorithm codes are mainly treated in this study for the purpose of simulating their hysteretic behavior through numerical analyses. The simulated curves are compared and calibrated to the experimental test results with an aim to verify the adequacy of material modeling. Furthermore, structural analyses incorporating the material property of the superelastic SMAs are conducted on simple and cantilever beam models. It can be shown that constitutive material models presented herein are adequate to reliably predict the behavior of superelastic SMA materials under cyclic loadings.
In this paper, 3 layered architecture model and related design guidelines are proposed, which have been actually applied in our national ITS-Architecture design. The domain architecture as the 1st layer is to structure all ITS related domains for maximizing the co-operability in national level. The logical architecture as the 2nd layer is to structure all ITS related application-systems for minimizing duplications, conflicts and dead-zones in service level and maximizing the co-operability in application-system level. The physical architecture as the 3rd layer is to structure all IT(Information Technology) related physical resources for maximizing.
수학은 그 근본이 창조적인 활동이다. 창조성은 그것의 본질적인 아름다움을 통해서나 현실 세계문제에 응용되는 방식 중의 하나로 개발될 수 있다. 수많은 위대한 수학자들은 수학의 응용에 진실로 흥미를 가져왔으며, 물리적 현상의 수학적 규명으로부터 새로운 수학이론개발의 영감을 얻어왔다. 우리는 이번연구에서 수학적 모델이 어떻게 형성되고 사용되는지를 살펴보고 수학의 응용 단계에 대하여 연구해 볼 것이다. 그 수학의 응용 예시로써 스포츠, 환경, 인구에 대해 다루어 볼 것이다.
본고에서는 센서 네트워크의 분산 검출 분야에서 최근 활발히 연구되고 있는 물리계층 보안기술들을 소개하고자 한다. 복잡한 연산과정을 요구하는 기존 암호학 기반의 보안 시스템은 배터리용량과 연산 능력이 제한된 센서 네트워크에서 많은 유지보수 비용을 유발할 수 밖에 없다. 본고에서 소개할 물리계층 보안기술들은 기존의 통신 모뎀 기술을 보안 강화의 목적으로 재활용하는 기술이다. 따라서, 복잡한 연산이나 추가적인 하드웨어를 필요로 하지 않기 때문에 자원이 제한된 센서 네트워크에 매우 적합하다. 본고에서는 센서네트워크에서 제안된 대표적인 물리계층 보안기술인 확률적 암호화 (stochastic encryption) 기법과 채널 인지 암호화 (channel aware encryption) 기법을 소개한다. 제안된 물리계층 암호화 기술을 두 가지 무선 채널 모형 PAC (parallel access channel)과 MAC (multiple access channel)에서 간략화된 모델로 재해석하여 센서 네트워크를 위한 보안 기술로서 적합성 여부를 평가하도록 하겠다.
The qualitative and quantitative prediction for the dispersion of thermal discharge from nuclear / fossil power plant, steel works etc. has significant roles for the cooling system. Design and environmental management. In this study, the several important physical properties for the behavior of a thermal discharge with strong turbulent and buoyant effects are described. The comparative evaluation between MIT and PDS models is carried out, which have the different model structures. In general, MIT and PDS models are commonly used to calculate the thermal discharge behavior with considering the ambient current and the angle of jet in an unstratified water body. The simulated results by these models have great discrepancies due to the different assumptions in modling.
Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
/
2004.03a
/
pp.511-516
/
2004
수치표고모델, 정사영상과 같은 공간영상정보를 구축하기 위해서는 입체영상을 이동한 영상정합(image matching)의 과정이 필수적이며, 단영상 또는 스테레오 영상을 이용하여 대상물의 3차원 정보를 재구성하고 복원하는 기술은 사진측량 및 컴퓨터 비전 분야의 주요 연구 중의 하나이다. 본 연구에서는 화소값의 유사성과 상호관계성을 고려하는 MRF 모델을 이용하여 영상정합을 수행하였다. MRF 모델은 공간분석이나 물리적 현상의 전후관계(contextural dependencies)의 분석을 위한 확률이론의 한 분야로 다양한 공간정보를 통합할 수 있는 방법을 제공한다. 본 연구에서는 기준영상의 화소에 시차를 할당하는 접근 방법으로 확률모델의 일종인 마르코프 랜덤필드(MRF)모델에 기반한 영상정합기법을 제안하였고, 공간내 화소의 상호관계를 고려해주므로 대상물의 경계부분에서의 매칭 정확도를 향상시켰다. 영상정합문제에서의 MRF 기본가정은 영상 내 특정화소의 시차는 그 주위화소의 시차에 의한 부분정보에 따라 결정이 가능하다는 것이다. 깁스분포(gibbs distribution)를 사용하여 사후(posteriori) 확률값을 유도해내고, 이를 최대사후확률(MAP: Maximum a Posteriori)추정법을 이용하여 에너지함수를 생성하였다. 생성된 에너지함수의 최적화(Optimization)를 위하여 본 연구에서는 전역최적화기법인 multiway cut 기법을 사용하여 영상정합에 있어 에너지함수를 최소로 하는 이미지화소에 대한 시차레이블을 구하여 영상정합을 수행하였다.
Non-linear elastic wavefield inversion is a powerful method for estimating elastic parameters for physical constraints that determine subsurface rock and properties. Here, I introduce six elastic-wave velocity models by reconstructing elastic-wave velocity variations from real data and a 2D elastic-wave velocity model. Reflection seismic data information is often decoupled into short and long wavelength components. The local search method has difficulty in estimating the longer wavelength velocity if the starting model is far from the true model, and source frequencies are then changed from lower to higher bands (as in the 'frequency-cascade scheme') to estimate model elastic parameters. Elastic parameters are inverted at each inversion step ('simultaneous mode') with a starting model of linear P- and S-wave velocity trends with depth. Elastic parameters are also derived by inversion in three other modes - using a P- and S-wave velocity basis $('V_P\;V_S\;mode')$; P-impedance and Poisson's ratio basis $('I_P\;Poisson\;mode')$; and P- and S-impedance $('I_P\;I_S\;mode')$. Density values are updated at each elastic inversion step under three assumptions in each mode. By evaluating the accuracy of the inversion for each parameter set for elastic models, it can be concluded that there is no specific difference between the inversion results for the $V_P\;V_S$ mode and the $I_P$ Poisson mode. The same conclusion is expected for the $I_P\;I_S$ mode, too. This gives us a sound basis for full wavelength elastic wavefield inversion.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.