DOI QR코드

DOI QR Code

Numerical Simulation for the Quasi-static Behavior of Superelastic Nitinol Shape Memory Alloys (SMAs)

초탄성 니티놀 형상기억합금의 준정적 거동에 대한 수치해석적 재현

  • Hu, Jong Wan (Department of Civil and Environmental Engineering, Incheon Disaster Prevention Research Center, Incheon National University)
  • 허종완 (국립인천대학교, 도시환경공학부, 국립인천대학교, 인천방재연구센터)
  • Received : 2015.09.02
  • Accepted : 2015.11.10
  • Published : 2015.12.27

Abstract

Superelastic shape memory alloys (SMAs) are metallic materials that can automatically recover to their original condition without heat treatment only after the removal of the applied load. These smart materials have been wildly applied instead of steel materials to the place where large deformation is likely to concentrate. In spite of many advantages, superelastic SMA materials have been limited to use in the construction filed because there is lack of effort and research involved with the development of the material model, which is required to reproduce the behavior of superelastic SMA materials. Therefore, constitutive material models as well as algorithm codes are mainly treated in this study for the purpose of simulating their hysteretic behavior through numerical analyses. The simulated curves are compared and calibrated to the experimental test results with an aim to verify the adequacy of material modeling. Furthermore, structural analyses incorporating the material property of the superelastic SMAs are conducted on simple and cantilever beam models. It can be shown that constitutive material models presented herein are adequate to reliably predict the behavior of superelastic SMA materials under cyclic loadings.

초탄성 형상기억합금은 상온에서 소성 범위를 초월하여 상당량의 변위를 가하더라도 하중을 제거 후에 별도의 열처리를 가하지 않더라도 원상태로 복원이 가능한 특수한 금속이다. 자동치유가 가능한 형상기억합금의 특유한 재료적인 성질로 인하여 구조물에서 변위가 집중되는 부분에 기존에 주로 사용되는 강재를 대체하여 이러한 특수 합금 재료가 널리 활용되기 시작하였다. 하지만 형상기억합금을 활용한 구조물의 기본적인 설계와 성능 검증을 하기 위해 고등적인 구조해석에 필요한 재료적인 모델의 개발과 연구의 노력이 부족하기 때문에 본 재료를 현장에서 적용하기에는 여전히 많은 제약을 받고 있다. 따라서 본 연구에서는 초탄성 형상기억합금의 거동을 수치해석적인 방법으로 재현이 가능한 구성적인 재료 모델의 소개와 프로그램 코딩에 대하여 다루고자 한다. 또한 본 연구에서 제시된 재료 모델의 타당성을 입증하기 위하여 수치해석적으로 재현된 물리적인 거동을 실험에서 얻어진 데이터에 비교 및 보정 작업도 수행하였다. 아울러 이러한 재료 모델로 구현된 초탄성 형상기억합금의 물리적인 물성치를 구조 해석에 적용하고 정확성을 검증하여 현장 적용의 타당성을 입증하였다.

Keywords

References

  1. Song, G., Ma, N., and Li, H. (2006) Applications of Shape Memory Alloys in Civil Structures, Engineering Structures, Vol.28, No.9, pp.1266-1274. https://doi.org/10.1016/j.engstruct.2005.12.010
  2. DesRoches, R., McCormick, J., and Delemont, M. (2004) Cyclic Properties of Superelastic Shape Memory Alloy Wires and Bars, Journal of Structural Engineering, ASCE, Vol.130, No.1, pp.38-46. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(38)
  3. Hu, J.W. (2014) Seismic Analysis and Evaluation of Several Recentering Braced Frame Structures, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol.228, No.5, pp.781-798. https://doi.org/10.1177/0954406213490600
  4. Hu, J.W. (2015) Response of Seismically Isolated Steel Frame Buildings with Sustainable Lead-Rubber Bearing (LRB) Isolator Devices Subjected to Near-Fault (NF) Ground Motions, Sustainability, Vol.7, pp.111-137, doi:10.3390/su7010111.
  5. Hu, J.W. and Choi, E. (2014) Seismic Design, Nonlinear Analysis, and Performance Evaluation of Recentering Buckling-Restrained Braced Frames (BRBFs), International Journal of Steel Structures, KSSC, Vol.14, No.4, pp. 683-695. https://doi.org/10.1007/s13296-014-1201-3
  6. Hu, J.W. and Leon, R.T. (2011) Analysis and Evaluations for Composite-Moment Frames with SMA PR-CFT Connections, Nonlinear Dynamics, doi:10.1007/s11071-010-9903-3.
  7. Hu, J.W., Choi, E., and Leon, R.T. (2011) Design, Analysis, and Application of Innovative Composite PR Connections Between Steel Beams and CFT Columns, Smart Materials and Structures, doi:10.1088/0964-1726/20/2/025019.
  8. Duerig, T., Melton, K., Stokel, D., and Wayman, C. (1990) Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London, UK.
  9. Auricchio, F. and Sacco, E. (1997) A One-Dimensional Model for Superelastic Shape-Memory Alloys with Different Properties Between Martensite and Austenite, International Journal of Non-Linear Mechanics, Vol.32, No.6, pp. 1101-1114. https://doi.org/10.1016/S0020-7462(96)00130-8
  10. Mazzoni, S., Mckenna, F., and Fenves, G.L. (2006) OpenSEES Command Language Manual v. 1.7.3. Department of Civil Environmental Engineering. University of California, Berkeley, CA.

Cited by

  1. Modelling of Tensile Behaviour of NiTinol SMA Wire by Finite Element Analysis vol.895, 2017, https://doi.org/10.4028/www.scientific.net/MSF.895.8
  2. Hysteretic Model for Superelastic NiTi Shape Memory Alloys vol.33, pp.6, 2021, https://doi.org/10.7781/kjoss.2021.33.6.373