• Title/Summary/Keyword: 문제제기 전략

Search Result 171, Processing Time 0.024 seconds

A Case Study on Mathematical Problem Posing in Pre-service Mathematics Teacher Education (예비수학교사 교육에서 수학적 문제제기 수업 사례)

  • Han, Hyesook
    • Journal of the Korean School Mathematics Society
    • /
    • v.21 no.1
    • /
    • pp.63-89
    • /
    • 2018
  • In this study, the researcher developed a course integrated mathematical problem posing activities in order to enhance pre-service mathematics teachers' ability to carry out problem posing activities in mathematics classroom, and examined the changes of pre-service mathematics teachers' perceptions about problem posing through the course. The problem posing course developed in this study consisted of three stages: education on the theories regarding problem posing; activities with problem posing; development and implementation of problem posing tasks. According to the results of the questionnaires, interviews, and class journals data analysis, the problem posing experiences provided in this study were very effective in improving pre-service mathematics teachers' understanding of the problem posing strategies and the benefit of problem posing activities to student learning. Particularly, the experience in various problem posing activities and the implementation experience of problem posing provided in the course played a key role in the improvement of pre-service mathematics teachers' understanding of problem posing and PCK.

The analysis of middle school students' problem posing types and strategies (중학생들의 수학적 문제제기 유형과 전략 분석)

  • Joo, Hongyun;Han, Hyesook
    • The Mathematical Education
    • /
    • v.55 no.1
    • /
    • pp.73-89
    • /
    • 2016
  • The purpose of this study was to analyze middle school students' problem posing types and strategies. we analyzed problems posed by 120 middle school students during mathematics class focused on problem posing activities in various aspects. Students' posed problems were classified into five types: not a problem(NP), non-math(NM), impossible(IM), insufficient(IN), sufficient(SU) and each of the posed problems. Students used three kinds of problem posing strategies such as goal manipulation(GM), assumption manipulation(AM), and condition manipulation(CM), and in posing one problem, one or more than two strategies were used. According to the prior studies, problem posing can contributes to the development of students' problem solving ability, creativity, mathematical aptitude, and a broader understanding of mathematical concepts. However, we found that some students had difficulties in posing problems or limited understandings of that. We hope the results of the study contribute to encouraging problem posing activities in mathematics instruction.

Determinants of Forum Non Conveniens on International Contract Negotiation;U.S. Court's Judicial Precedent (국제거래 계약협상 분쟁시 부적정관할지 판단요인;미국법원 판례 기준)

  • Choi, Chang-Hwan
    • Journal of Arbitration Studies
    • /
    • v.18 no.2
    • /
    • pp.129-148
    • /
    • 2008
  • 국제거래에서 분쟁이 소송으로 발전될 경우 당해 사안에 적용될 준거법의 결정문제와 어느 나라의 법원에서 재판을 받을 것인가에 대한 국제재판관할권의 문제가 빈번히 대두되고 있다. 소송을 제기하는 당사자들로서는 자신에게 유리한 재판결과를 얻을 수 있는 법이 준거법으로 선택될 가능성이 있는 국가의 법원에 소송을 제기하는 소위 '포럼 쇼핑 (forum shopping)' 전략을 세우기도 한다. 이러한 포럼 쇼핑에 대응하기 위해 영미 판례법인 common law에서는 오래 전부터 forum non conveniens를 확립하였다. 본 논문에서는 forum non conveniens를 심리한 미국 대법원의 판단기준을 살펴보면 먼저, 적절한 대체관할지의 존재여부이며, 둘째 사적이익 부분에서 자국민이 현저하기 불리한 위치에 처하는지를 확인하고, 셋째 공적이익 부분에서 미국의 이익이 심각하게 침해되지는 않는지를 검토하여 판단하게 된다. 이러한 법리적 판단근거를 제시하고 이에 대한 적용사례를 분석하여 향후 무역거래를 포함한 일련의 국제계약에 있어 분쟁시 국내기업들이 미국법정에 재판받지 않고 국내법원으로 재판관할지를 선택할 수 있는 전략을 제시함으로써 패소가능성 등의 계약위험을 줄일 수 있을 것으로 판단된다.

  • PDF

A Study on Impeding Factors of Venture Firms in Daedeok Valley

  • Yang, Tae-Yong ;Jeon, Eui-Ju
    • Journal of Korea Technology Innovation Society
    • /
    • v.7 no.2
    • /
    • pp.305-324
    • /
    • 2004
  • 본 연구는 대덕벨리 벤처기업들의 현황 분석을 목적으로, 벤처 기업들의 CEO들을 대상으로 설문조사를 실시하였다. 이를 토대로 의미미분법을 적용하여 심층 분석해 본 결과, 대덕벨리의 벤처기업들은 대체로 자금조달, 마케팅 전략, 그리고 네트워크에 문제가 있는 것으로 나타났다. 특히, 제한된 자금조달 원천, R&D에 치중한 기업 전략, 낮은 산학 연간 협력구도가 핵심 현안문제로 제기 되었다.

  • PDF

효율적 센서 데이터 수집 전략과 비정상 데이터 검출에 관한 연구

  • Shon Tae-Shik;Choi Wook
    • Review of KIISC
    • /
    • v.16 no.4
    • /
    • pp.69-76
    • /
    • 2006
  • 센서 네트워크는 네트워크 특성상 근본적으로 기존의 네트워크와 다른 많은 제약 사항을 가지고 있다. 이러한 제약사항으로는 대량의 센서를 위한 비용 문제, 센서 자체의 물리적 취약성 문제 그리고 센서가 취합하는 데이터의 중요도에 따른 보안성 문제 등이 제기될 수 있다. 특히, 본 논문에서는 다양한 센서 네트워크의 기술 이슈 중에서 센서 네트워크의 특정 애플리케이션 지향적 정보 습득 특성에 초점을 맞추었다. 이때 센서 네트워크에서 빼놓을 수 없는 전력 소비 문제가 함께 고려된 센서 네트워크의 효율적인 데이터 수집을 위한 클러스터 기반 지연 적응적 전략과 커버리지 적응적 전략을 소개하였다. 또한 이러한 데이터 습득 과정에서 발생할 수 있는 이상 데이터에 대한 검출 문제를 제시하고 그 대응방안으로서 K-means clustering을 사용한 비교사 학습 기반 방식을 제하였다.

The Effects of Mathematical Problem Posing Activities on 10th Grade Students' Mathematics Achievement and Affective Characteristic of Mathematics (수학적 문제제기 활동을 반영한 수업이 고등학교 1학년 학생들의 수학 학업 성취도 및 수학 교과에 대한 정의적 특성에 미치는 영향)

  • Lee, Jae-Young;Han, Hyesook
    • Communications of Mathematical Education
    • /
    • v.32 no.3
    • /
    • pp.385-406
    • /
    • 2018
  • The purpose of this study is to investigate the effect of mathematics classes focused on mathematical problem posing activities on 10th grade students' mathematics achievement and affective characteristics of mathematics. This study was conducted in a total of 45 regular mathematics classrooms with 81 students from two classes through a nonequivalent control group design. The results of the study showed that the teaching method based on mathematical problem posing activities had a more positive effect on students' mathematics achievement and the affective characteristics of mathematics than the teaching method that focuses on problem solving. The teaching method based on problem posing activities proposed in this study could induce students' self-reflective learning motivation, which in turn gave them a more solid understanding of the mathematical concepts they had learned. In addition, it was found that students' problem solving ability, mathematical communication ability, and mathematical thinking ability were positively influenced by problem posing activities. Regarding the affective characteristics of mathematics, the mathematical problem-posing activity suggested in this study turned out to be a very effective strategy for improving students' interest in mathematics.

Understanding of Statistical concepts Examined through Problem Posing by Analogy (유추에 의한 문제제기 활동을 통해 본 통계적 개념 이해)

  • Park, Mi-Mi;Lee, Dong-Hwan;Lee, Kyeong-Hwa;Ko, Eun-Sung
    • Journal of Educational Research in Mathematics
    • /
    • v.22 no.1
    • /
    • pp.101-115
    • /
    • 2012
  • Analogy, a plausible reasoning on the basis of similarity, is one of the thinking strategy for concept formation, problem solving, and new discovery in many disciplines. Statistics educators argue that analogy can be used as an useful thinking strategy in statistics as well. This study investigated the characteristics of students' analogical thinking in statistics. The mathematically gifted were asked to construct similar problems to a base problem which is a statistical problem having a statistical context. From the analysis of the problems, students' new problems were classified into five types on the basis of the preservation of the statistical context and that of the basic structure of the base problem. From the result, researchers provide some implications. In statistics, the problems, which failed to preserve the statistical context of base problem, have no meaning in statistics. However, the problems which preserved the statistical context can give possibilities for reconceptualization of the statistical concept even though the basic structure of the problem were changed.

  • PDF

An Analysis of Elementary School Students' Strategy in Comparing the Size of Fractions (초등학생들의 분수의 크기 비교 전략 분석)

  • Kim, Yukyung;Hwang, Hyunmi
    • Journal of Educational Research in Mathematics
    • /
    • v.26 no.4
    • /
    • pp.663-682
    • /
    • 2016
  • This study conducted an analysis of strategies that the 3rd to 6th grade elementary students used when they were solving problems of comparing the size of the fractions with like and unlike denominators, and unit fractions. Although there were slight differences in the students' use of strategies according to the problem types, students were found to use the 'part-whole strategy', 'transforming strategy', and 'between fractions strategy' frequently. But 'pieces strategy', 'unit fraction strategy', 'within fraction strategy', and 'equivalent fraction strategy' were not used frequently. In regard to the strategy use that is appropriate to the problem condition, it was found that students needed to use the 'unit fraction strategy', and the 'within fraction strategy', whereas there were many errors in their use of the 'between fractions strategy'. Based on the results, the study attempted to provide pedagogical implications in teaching and learning for comparing the size of the fractions.