• 제목/요약/키워드: 문장 오류

검색결과 241건 처리시간 0.029초

기능어용 음소 모델을 적용한 한국어 연속음성 인식 (Korean Continuous Speech Recognition using Phone Models for Function words)

  • 명주현;정민화
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.354-356
    • /
    • 2000
  • 의사형태소를 디코딩 단위로 한국어 연속 음성 인식에서의 조사, 어미, 접사 및 짧은 용언의 어간등의 단어가 상당수의 인식 오류를 발생시킨다. 이러한 단어들은 발화 지속시간이 매우 짧고 생략이 빈번하며 결합되는 다른 형태소의 형태에 따라서 매우 심한 발음상의 변이를 보인다. 본 논문에서는 이러한 단어들은 한국어 기능어라 정의하고 실제 의사형태소 단위의 인식 실험을 통하여 기능어 집합 1, 2를 규정하였다. 그리고 한국어 기능어에 기능어용 음소를 독립적으로 적용하는 방법을 제안했다. 또한 기능어용 음소가 분리되어 생기는 음향학적 변이들을 처리하기 위해 Gaussian Mixture 수를 증가시켜 보다 견고한 학습을 수행했고, 기능어들의 음향 모델 스코어가 높아짐에 따른 인식에서의 삽입 오류 증가를 낮추기 위해 언어 모델에 fixed penalty를 부여하였다. 기능어 집합1에 대한 음소 모델을 적용한 경우 전체 문장 인식률은 0.8% 향상되었고 기능어 집합2에 대한 기능어 음소 모델을 적용하였을 때 전체 문장 인식률은 1.4% 증가하였다. 위의 실험 결과를 통하여 한국어 기능어에 대해 새로운 음소를 적용하여 독립적으로 학습하여 인식을 수행하는 것이 효과적임을 확인하였다.

  • PDF

병렬 말뭉치를 이용한 도메인 특화 사전 자동 추출 연구 (A Study of Automatic Extraction of Domain Specified Dictionary)

  • 박은진;황금하;김영길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2009년도 제21회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.237-241
    • /
    • 2009
  • 본 논문에서는 도메인별 병렬 말뭉치를 이용하여 해당 도메인에 특화된 한영 대역쌍을 Moses Toolkit을 이용하여 자동 추출하였다. 이렇게 추출된 대역쌍은 도메인 특화 자동 번역 시스템의 번역 사전으로 사용하기에는 많은 오류가 포함되어 있기 때문에, 본 논문에서는 이를 효율적으로 제거할 수 있는 식을 제안하였다. 본 논문에서 제안한 식으로 오류를 제거한 결과, 임계값 0.5를 기준으로 추출된 한영 대역쌍이 1,098개였고, 이는 실험에 사용한 기업 분야 병렬 말뭉치 42,200문장 중에서 29,292문장(69.4%)에 영향을 주었다. 자동으로 추출한 도메인 특화 번역 지식을 기존 자동 번역 시스템의 번역 지식에 적용한 결과 BLEU가 0.0054 향상되었다.

  • PDF

한글 문서에서 형태적 중의 오류의 교정 (A method for morphological correction of ambiguous error)

  • 김민주;정준호;이현주;최재혁;김항준;이상조
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.41-48
    • /
    • 1998
  • 교정 시스템에 나타나는 오류 유형들 중에는 전체적인 교정률에 차지하는 비중은 적지만 출현할 때마다 틀릴 가능성이 아주 높은 오류들이 있다. 기존의 교정 시스템에서는 이러한 오류들에 대한 처리가 미흡한데, 철자 오류와 띄어쓰기 오류 중 형태가 비슷하거나 같은 형태가 다른 기능을 함으로써 발생하는 오류들이다. 이러한 오류는 일반 문서 작성자뿐만 아니라 한글 맞춤법에 대해 어느 정도 지식을 가진 사람의 경우에도 구분이 모호하다. 복합 명사와 미등록어를 제외한 오류 중 약 30%가 여기에 속한다. 따라서 본 논문에서는 이러한 오류 유형들을 분류하고, 이 중에서 빈번하게 출현하는 오류에 대한 교정을 시도하고, 오류 유형들이 문장 내에서 어떤 분포를 가지는지 알아본다. 약 617만 어절의 말뭉치를 이용하여 해당 형태와 다른 성분들과의 관련성을 조사하여 교정 방법을 제시하고, 형태소 분석을 하여 교정을 행한다. 코퍼스 655만 어절 대상으로 실험한 결과 84.6%의 교정률을 보였다. 본 논문에서 제시한 교정 방법은 기존의 교정 시스템에 추가되어 교정 시스템의 전체 교정률을 향상시킬 수 있다. 또한 이와 비슷한 유형의 다른 어휘 교정에 대한 기초 자료로 사용될 수 있을 것이다.

  • PDF

확장한 어휘적 중의성 제거 규칙에 따른 부분 문장 분석에 기반한 한국어 문법 검사기 (A Korean Grammar Chacker Founded on Expanded Lexical Disambiguation Rule and Partial Parsing)

  • 박수호;권혁철
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.516-522
    • /
    • 2001
  • 본 논문에서는 한국어 형태소 분석기가 처리할 수 없는 어휘적 중의성 해결을 위한 방법으로 부분 문장 분석 기법을 연구한다. 부분 문장 분석 기법의 신뢰도를 높이기 위해서 말뭉치를 이용한 데이터를 통해 학습한 경험적 규칙을 이용한다. 학습한 경험적 규칙을 오류 유형에 따라 확장하고 전문화하여 축적된 연구결과를 지식 베이스로 삼아 한국어 맞춤법 및 문법 검사기에서 사용하는 부분 문장 분석기의 성능을 향상시킨다. 본 논문에서 사용한 확장하고 전문화한 지식 베이스는 말뭉치에서 얻은 경험적 규칙을 기반으로 한다. 이 경험적 규칙은 언어적 지식을 기반으로 한다.

  • PDF

한-영 기계번역 결과물의 오류 유형 및 원인 분석: 형태적·구문적 오류를 중심으로 (Analyzing the Types and Causes of Korean-to-English Machine Translation Errors: Focused on Morphological and Syntactical Errors)

  • 백지연;구혜경
    • 문화기술의 융합
    • /
    • 제8권4호
    • /
    • pp.199-204
    • /
    • 2022
  • 본 연구의 목적은 기계번역을 활용한 대학교 영어쓰기 수업에서 한-영 기계번역 결과물에 나타난 형태적 및 구문적 오류 유형과 그에 대한 원인을 분석하기 위한 것이다. 한국의 EFL 대학생 7명이 연구에 참여하였으며, 그들은 한 학기동안 총 3회의 영어쓰기 과제를 수행하였다. 본 연구에서는 학생들이 제출한 영어쓰기 결과물 중 기계번역 결과물에 나타난 형태적 및 구문적 오류의 유형을 분석하였으며, 우리말 초고와 비교 분석을 통하여 그 원인을 찾아보고자 하였다. 분석결과, 기계번역 결과물에서 가장 많이 발생한 오류는 문장구조와 표기법 관련 오류였으며, 기계번역 결과물에서 발생한 대부분의 오류는 한국어 원문의 오류로 인하여 발생한 것으로 파악되었다.

가변 어휘 인식 모델을 이용한 한국어 방송 뉴스 음성의 인식 (Automatic Recognition of Korean Broadcast News Using Flexible Vocabulary Recognition Models)

  • 유하진
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.70-73
    • /
    • 1998
  • 본 논문에서는 한국어 방송 뉴스 인식 시스템에 관하여 기술한다. 인식 실험 과정에서는 실제로 방송된 음성을 인식하였으나, 인식을 위한 음향 모델은 본 연구소에서 갭라한 고립단어 인식용 가변 어휘 인식모델을 이용하였다. 가변 어휘 인식기는 방송 음성의 연속 문장을 이용하지 않고, 음향학적으로 고르게 분포된 고립 단어를 이용하여 학습되었다. 본 연구에서는 한국어의 특성상 문장이 영어권과 같이 단어 단위가 아닌 어절로 나누어 지는 점을 고려하여, 다양한 형태의 사전 표제어를 대상으로 실험하였다. 또한 탐색과정의 초기단계에 장거리 언어모델을 사용함으로써 인식 오류를 줄일 수 있었다.

  • PDF

음성합성 플랫폼을 위한 언어처리부의 설계 및 구현 (Design and Implementation of the Language Processor for Educational TTS Platform)

  • 이상호
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2005년도 추계 학술대회 발표논문집
    • /
    • pp.219-222
    • /
    • 2005
  • 본 논문에서는 한국어 TSS 시스템을 위한 언어처리부의 설계 및 구현 과정을 설명한다. 구현된 언어처리부는 형태소 분석, 품사 태깅, 발음 변환 과정을 거쳐, 주어진 문장의 가장 적절한 발음열과 각 음소의 해당 품사를 출력한다. 프로그램은 표준 C언어로 구현되어 있고, Windows와 Linux에서 모두 동작되는 것을 확인하였다. 수동으로 품사가 할당된 4.5만 어절의 코퍼스로부터 형태소 사전을 구축하였으며, 모든 단어가 사전에 등록되어 있다고 가정할 경우, 488문장의 실험 자료에 대해 어절 단위 오류율이 3.25%이었다.

  • PDF

뉴럴 한국어 맞춤법 교정기에서 과교정(Overcorrection) 문제 완화 (Alleviation of Overcorrection Problem in Neural Korean Spelling Correction)

  • 박찬준;이연수;양기수;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.582-587
    • /
    • 2020
  • 현재까지 한국어 맞춤법 교정 Task는 대부분 규칙기반 및 통계기반 방식의 연구가 진행되었으며 최근 딥러닝 기반의 한국어 맞춤법 교정에 대한 연구가 진행되고 있다. 맞춤법 교정에서 문법적 또는 철자적으로 틀린 부분을 교정하는 것도 중요하지만 올바른 문장이 입력으로 들어왔을 때 교정을 진행하지 않고 올바른 문장을 출력으로 내보내는 것 또한 중요하다. 규칙기반 맞춤법 교정기 같은 경우 문장의 구조를 흐트러트리지 않고 규칙에 부합하는 오류 부분만 고쳐낸다는 장점이 있으나 신경망 기반의 한국어 맞춤법 교정 같은 경우 Neural Machine Translation(NMT)의 고질적인 문제점인 반복 번역, 생략, UNK(Unknown) 때문에 문장의 구조를 흐트러트리거나 overcorrection(과교정) 하는 경우가 존재한다. 본 논문은 이러한 한계점을 극복하기 위하여 Correct to Correct Mechanism을 제안하며 이를 통해 올바른 문장이 입력으로 들어왔을 시 올바른 문장을 출력하는 성능을 높인다.

  • PDF

음절과 형태소 정보를 이용한 한국어 문장 띄어쓰기 교정 모델 (Korean sentence spacing correction model using syllable and morpheme information)

  • 최정명;오병두;허탁성;정영석;김유섭
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.141-144
    • /
    • 2020
  • 한국어에서 문장의 가독성이나 맥락 파악을 위해 띄어쓰기는 매우 중요하다. 또한 자연 언어 처리를 할 때 띄어쓰기 오류가 있는 문장을 사용하면 문장의 구조가 달라지기 때문에 성능에 영향을 미칠 수 있다. 기존 연구에서는 N-gram 기반 통계적인 방법과 형태소 분석기를 이용하여 띄어쓰기 교정을 해왔다. 최근 들어 심층 신경망을 활용하는 많은 띄어쓰기 교정 연구가 진행되고 있다. 기존 심층 신경망을 이용한 연구에서는 문장을 음절 단위 또는 형태소 단위로 처리하여 교정 모델을 만들었다. 본 연구에서는 음절과 형태소 단위 모두 모델의 입력으로 사용하여 두 정보를 결합하여 띄어쓰기 교정 문제를 해결하고자 한다. 모델은 문장의 음절과 형태소 시퀀스에서 지역적 정보를 학습할 수 있는 Convolutional Neural Network와 순서정보를 정방향, 후방향으로 학습할 수 있는 Bidirectional Long Short-Term Memory 구조를 사용한다. 모델의 성능은 음절의 정확도와 어절의 정밀도, 어절의 재현율, 어절의 F1 score를 사용해 평가하였다. 제안한 모델의 성능 평가 결과 어절의 F1 score가 96.06%로 우수한 성능을 냈다.

  • PDF

단어 간 지배 관계 및 연관 관계를 이용한 한국어 교열 시스템 (A Korean Revision System Using the governal and collocational relation between words)

  • 심철민;김민정;이영식;권혁철
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1993년도 제5회 한글 및 한국어정보처리 학술대회
    • /
    • pp.303-316
    • /
    • 1993
  • 스펠러와 같은 오류 처리 기법은 한 어절 사이의 처리에 국한되거나, 또는 수사 처리와 같이 일부 제한된 품사 영역에서만 어절을 넘어선 처리가 행해지고 있다. 한편 교열과 같은 어절 단위를 넘어선 오류 처리는 완벽한 통사 분석과 의미 해석을 반드시 필요로 한다고 생각되어져 왔다. 그리고 현재 한국어 처리에서는 완벽한 통사적, 의미적 처리가 불가능하기 때문에 교열 시스템 또는 어절 단위를 넘어선 오류 처리에 대한 연구가 거의 전무한 실정이다. 본 논문은 어절을 넘어선 오류의 유형을 분류하고, 문장 단위로 관련된 단어 사용오류를 검사하는 기법과 관련 단어 처리를 위한 규칙 데이타 베이스의 구조를 제안한다. 단어 사이에 존재하는 통사적, 의미적 지배 관계와 연관 관계를 어휘선택 제약으로 이용함으로써 완벽한 통사 분석과 의미 분석이 없이도 교열이 가능하게 하였다.

  • PDF