본 논문은 다양한 형태의 웹 문서에 적용하기 위해서, 언어의 통계정보 및 후처리 규칙에 기반하여 개선한 문장경계 인식 기술을 제안한다. 제안한 방법은 구두점 생략 및 띄어쓰기 오류가 빈번한 웹문서에 적용하기 위해서 문장경계로 사용될 수 있는 모든 종결어미를 대상으로 학습하여 문장경계 인식을 수행하였다. 또한 문장경계인식 성능을 최대화하기 위해서 다양한 실험을 통해 최적의 자질 및 학습데이터를 선정하였고, 학습데이터에 의존적인 통계모델의 오류를 규칙에 기반 해서 보정하였다. 성능 실험은 다양한 문서별 성능 측정을 위해서 구두점이 주로 문장경계로 사용된 문어체 위주의 평가셋1(신문기사와 블로그 문서)과 구두점 생략 및 띄어쓰기 오류가 빈번한 웹 문서 위주의 평가셋2(웹 사이트의 게시판 글)를 대상으로 성능을 측정하였다. 평가 척도로는 F-measure를 사용하였으며, 기존 연구와 동일하게 구두점만을 문장경계 대상으로 학습한 기본 모델을 만들어서 실험한 결과, 평가셋1에 대해서 96.5%의 성능을 보였지만, 평가셋2에 대해서는 56.7%로 매우 저조한 성능을 보였다. 제안하는 개선 방법은 기본 모델을 웹 문서의 특징을 반영시키도록 자질 및 엔진을 개선시켰고, 최종 모델을 평가셋2로 평가한 결과, 96.3%의 성능을 보여서 39.6%의 성능 향상이 있음을 확인하였다.
대면 서비스보다 비대면 서비스를 선호하는 소비자들의 증가로 인해 기업의 고객 응대의 형태도 변해가고 있다. 기존의 전화 상담보다는 인터넷에 글을 쓰는 형식으로 문의를 하는 고객이 증가하고 있으며, 관련 기업에서는 이와 같은 변화에 효율적으로 대처하기 위해, 텍스트 기반의 상담시스템에 대한 다양한 연구 및 투자를 하고 있다. 특히, 입력된 질의에 대해서 자동 답변하는 챗봇(ChatBot)이 주목받고 있으나, 낮은 답변 정확도로 인해 실제 응용에는 어려움을 겪고 있다. 이에 본 논문에서는 상담원이 중심이 되는 텍스트 기반의 상담시스템에서 상담원이 보다 쉽게 답변을 수행할 수 있도록 자동으로 답변을 추천해주는 자동답변추천 시스템을 제안한다. 실험에서는 기존 질의응답 시스템 구축에 주로 사용되는 문장유사도 알고리즘과 더불어 합성곱신경망을 이용한 자동답변추천 기법의 답변추천 성능을 비교한다. 실험 결과, 문장유사도 기반의 답변추천 기법보다 본 논문에서 제안한 합성곱신경망(Convolutional Neural Networks) 기반의 답변추천시스템이 더 뛰어난 답변추천 성능을 나타냄을 보였다.
최근, 빅데이터 분석은 기계학습의 발전에 따른 다양한 기법들을 이용할 수 있다. 현실에서 수집된 빅데이터는 단어 간의 관계성에 대한 의미적 분석을 바탕으로 같거나 유사한 용어에 대한 자동화된 정제기법이 부족하다. 빅데이터는 보통 문장의 형태로 구성되어 있고, 이에 대한 형태소 분석이나 문장의 이해가 필요하다. 이에 자연어를 분석하기 위한 기법인 NLP는 단어의 관계성과 문장을 이해할 수 있다. 본 논문에서는 빅데이터를 시계열 접근법인 RNN의 단점을 보완한 기법인 트랜스포머와 리포머의 장단점에 대해 연구한다.
본 연구에서는 한국어 기반의 시를 창작하는 데 도움이 되는 문장들을 생성하는 인공지능을 개발하였다. 인공지능이 인간의 고유의 영역이라고 할 수 있는 창작에 대한 욕망과 창의력을 대신하는 것이 아니라, 인간이 창의력을 효율적으로 사용할 수 있도록, 창작에 밑바탕이 되는 문장들을 생성하는데 초점을 맞추었다. 시인들과의 인터뷰를 통해서 8개의 다른 데이터 세트로부터 문장을 학습하여 8가지 장르의 시가 생성될 수 있도록 만들었다. 이 연구는 한국어를 활용한 문학 작품 생성 기술을 개발하였다는 점에서 차별성이 있으며, 이 연구를 확장해서 수필과 산문 또는 소설과 같은 다양한 형태의 문학 작품을 창작하는 데 도움이 될 수 있다는 점에서 큰 의미가 있다.
의사형태소를 디코딩 단위로 한국어 연속 음성 인식에서의 조사, 어미, 접사 및 짧은 용언의 어간등의 단어가 상당수의 인식 오류를 발생시킨다. 이러한 단어들은 발화 지속시간이 매우 짧고 생략이 빈번하며 결합되는 다른 형태소의 형태에 따라서 매우 심한 발음상의 변이를 보인다. 본 논문에서는 이러한 단어들은 한국어 기능어라 정의하고 실제 의사형태소 단위의 인식 실험을 통하여 기능어 집합 1, 2를 규정하였다. 그리고 한국어 기능어에 기능어용 음소를 독립적으로 적용하는 방법을 제안했다. 또한 기능어용 음소가 분리되어 생기는 음향학적 변이들을 처리하기 위해 Gaussian Mixture 수를 증가시켜 보다 견고한 학습을 수행했고, 기능어들의 음향 모델 스코어가 높아짐에 따른 인식에서의 삽입 오류 증가를 낮추기 위해 언어 모델에 fixed penalty를 부여하였다. 기능어 집합1에 대한 음소 모델을 적용한 경우 전체 문장 인식률은 0.8% 향상되었고 기능어 집합2에 대한 기능어 음소 모델을 적용하였을 때 전체 문장 인식률은 1.4% 증가하였다. 위의 실험 결과를 통하여 한국어 기능어에 대해 새로운 음소를 적용하여 독립적으로 학습하여 인식을 수행하는 것이 효과적임을 확인하였다.
대표적인 웹 문서의 표준인 XML(eXtensible Markup Language)은 문서의 구조와 내용을 기술하기 위해 태그(tag)로 이루어진 문법 구조를 이용한다. 일반적인 텍스트 에디터 환경에서 XML 문서에 입력되는 내용(contents)과 그것을 포함하는 태그의 쌍은 완전하지 못한 형태로 입력될 수 있다. XML 문서를 작성하는 과정에서 문법적으로 불완전한 문장 입력은 정상적인 파싱을 보장하지 않는다. 본 논문은 XML 문서 편집기에 사용될 수 있는 XML 파서가 문법적으로 불충분한 문장의 입력에 대해 문법에 따라 빠진 부분을 인식하고, 누락된 문법 심벌을 찾아 부족한 부분 파스 트리를 완성함으로써 사용자에게 성공적인 XML 문서 편집을 보장할 수 있는 파싱 방법을 제안한다. 제안된 파싱 방법을 통해 사용자는 프로그래밍 편집 중 문법 오류에 대한 부담을 줄일 수 있다. 또한, 사용자는 불완전 입력에 대해 일반적인 에러 처리에 따른 편집 중단 없이 계속적인 문서 파싱을 보장받아 편집 효율을 높일 수 있다.
본 논문에서는 21세기 세종계획 "현대문어 형태 분석 말뭉치"에서 나타나는 오류를 개선하는 방법으로 패치 시스템을 제안한다. 이 패치 시스템은 패치 파일과 패치 적용-생성 스크립트로 구성되며, 사용자들은 패치 파일을 사용하여 원래의 말뭉치에서 어떤 파일과 어절을 수정하였는지 확인할 수 있어 개발 목적에 맞는 학습 말뭉치를 생성할 수 있다. 또한 이 시스템을 이용해 서로의 수정 사항을 공유하고, 지속적으로 세종 말뭉치의 오류를 개선할 수 있다. 본 논문에서는 총 1,015만 어절을 대상으로 31만여 개의 오류를 수정하였다. 오류의 유형으로는 문장, 어절 분리 오류, 철자 오류, 불일치 오류, 분석 오류, 형식 오류가 있으며, 오류 수정 사항을 패치 파일에 반영하였다.
군(軍)에서 방위력개선사업(이하 방위사업)은 매우 투명하고 효율적으로 이루어져야 함에도, 방위사업 관련 법 및 규정의 과도한 다양화로 많은 실무자들이 원활한 방위사업 추진에 어려움을 겪고 있다. 한편, 방위사업 관련 실무자들이 각종 문서에서 다루는 법령 문장은 문장 내에서 표현 하나만 잘못되더라도 심각한 문제를 유발하는 특징을 가지고 있으나, 이를 실시간으로 바로잡기 위한 문장 비교 시스템 구축에 대한 노력은 미미했다. 따라서 본 논문에서는 Siamese Network 기반의 자연어 처리(NLP) 분야 인공 신경망 모델을 이용하여 군(軍)의 방위사업 관련 문서에서 등장할 가능성이 높은 문장과 이와 관련된 법령 조항의 유사도를 비교하여 위법 위험 여부를 판단·분류하고, 그 결과를 사용자에게 인지시켜 주는 '군(軍) 보고서 등장 문장과 관련 법령 간 비교 시스템' 구축 방안을 제안하려고 한다. 직접 제작한 데이터 셋인 모(母)문장(실제 법령에 등장하는 문장)과 자(子)문장(모(母)문장에서 파생시킨 변형 문장) 3,442쌍을 사용하여 다양한 인공 신경망 모델(Bi-LSTM, Self-Attention, D_Bi-LSTM)을 학습시켰으며 1 : 1 문장 유사도 비교 실험을 통해 성능 평가를 수행한 결과, 상당히 높은 정확도로 자(子)문장의 모(母)문장 대비 위법 위험 여부를 분류할 수 있었다. 또한, 모델 학습에 사용한 자(子)문장 데이터는 법령 문장을 일정 규칙에 따라 변형한 형태이기 때문에 모(母)·자(子)문장 데이터만으로 학습시킨 모델이 실제 군(軍) 보고서에 등장하는 문장을 효과적으로 분류한다고 판단하기에는 제한된다는 단점을 보완하기 위해, 실제 군(軍) 보고서에 등장하는 형태에 보다 더 가깝고 모(母)문장과 연관된 새로운 문장 120문장을 추가로 작성하여 모델의 성능을 평가해본 결과, 모(母)·자(子)문장 데이터만으로 학습시킨 모델로도 일정 수준 이상의 성능을 확인 할 수 있었다. 결과적으로 본 연구를 통해 방위사업 관련 군(軍) 보고서에서 등장하는 여러 특정 문장들이 각각 어느 관련 법령의 어느 조항과 가장 유사한지 살펴보고, 해당 조항과의 유사도 비교를 통해 위법 위험 여부를 판단하는 '실시간 군(軍) 문서와 관련 법령 간 자동화 비교 시스템'의 구축 가능성을 확인할 수 있었다.
본고는 한국어의 양화사 유동 현상을 일반범주문법의 관점에서 통사론적, 의미론적으로 분석한다. '학생들이 넷이 술을 마셨다' 와 같은 문장에서 나타나는 유동 양화사는 통사론적으로 동사구수식어 (VP/VP)로 파악하고, 의미론적으로는 명사화된 속성이 관여하는 것으로 분석한다. 이 밖에도, 관련된 형태인 '넷' (NP/NP), '넷을' (TV/TV)등도 엄밀한 통사론적, 의미론적 분석을 시도한다. 성공적인 분석의 결과는 한국어 처리에 인접성 조건을 준수하는 범주문법의 사용가능성을 시사해 준다.
본 연구는 한글 문헌을 컴퓨터를 이용하여 축약하는 시스템 구축에 관한 연구로서, 기존의 '완전 자동축약'에 따른 축약문 생성의 편협성을 해결하기 위하여 '자동축약 + 후통제 처리'라는 절충형 시스템 관리 형태로 실제 실현 가능한 시스템을 설계한다는데 그 큰 목적이 있다. 대상 문헌에 대한 구체적 적응 문법은 언어학적 문법 이론인 '격문법 이론'과 '성분 이론'을 그 핵심으로 이용하여 문장을 '의미 있는 어절' 단위로 추출, 해당 문헌을 축약하는 방법을 택하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.