• Title/Summary/Keyword: 문서 추천

Search Result 124, Processing Time 0.024 seconds

Document Summarization Using Mutual Recommendation with LSA and Sense Analysis (LSA를 이용한 문장 상호 추천과 문장 성향 분석을 통한 문서 요약)

  • Lee, Dong-Wook;Baek, Seo-Hyeon;Park, Min-Ji;Park, Jin-Hee;Jung, Hye-Wuk;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.656-662
    • /
    • 2012
  • In this paper, we describe a new summarizing method based on a graph-based and a sense-based analysis. In the graph-based analysis, we convert sentences in a document into word vectors and calculate the similarity between each sentence using LSA. We reflect this similarity of sentences and the rarity scores of words in sentences to define weights of edges in the graph. Meanwhile, in the sense-based analysis, in order to determine the sense of words, subjectivity or objectivity, we built a database which is extended from the golden standards using Wordnet. We calculate the subjectivity of sentences from the sense of words, and select more subjective sentences. Lastly, we combine the results of these two methods. We evaluate the performance of the proposed method using classification games, which are usually used to measure the performances of summarization methods. We compare our method with the MS-Word auto-summarization, and verify the effectiveness of ours.

An Information Retrieval Model based on an Ergodic Markov Model (Ergodic Markov Model을 이용한 정보 검색 모델)

  • Kang, In-Ho;Lee, Yeo-Jin;Han, Young-S.;Kim, Gil-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.57-62
    • /
    • 2001
  • 인터넷의 급속한 양적 증가로 인해 색인어 기반의 검색 방식만으로는 원하는 정보를 찾아 내기가 쉽지 않다. 색인어 기반의 검색 방식에서는 색인어로 나타나지 않는 특징을 이용할 수 없으며, 질적으로 균등한 검색 결과를 제시하지 못하기 때문이다. 따라서 사이트의 여러 가지 특성에 따라 계층적으로 분류해놓은 웹 디렉토리를 이용하거나, 관련 전문가들의 추천 리스트를 이용하여 검객하기도 한다. 본 연구에서는 기존의 색인어 기반의 검색 모델에 웹 디렉토리와 추천 문서 같은 문서간의 링크 정보를 결합할 수 있는 정보 검색 모델을 제시한다. 특정 질의어의 검색 결과로 얻어낸 문서와 그 문서와 연결된 문서 집합을 이용하여 네트워크를 구성한다. 이 네트워크에 검색기가 제시하는 순위와 유사도, 그리고 문서간의 링크 정도를 이용해서 확률값을 정해준다. 그리고 Ergodic Markov Model의 특성을 이용하여 색인어 정보와 링크 정보를 결합한다. 본 연구에서는 특정 문서가 질의어에 부합되는 정도를 사용자가 그 문서로 이동할 확률값으로 계산하는 방식을 보인다.

  • PDF

Implementation of a Web Document Clustering System Using Word2Vec (Word2Vec을 이용한 웹 문서 클러스터링 시스템 구현)

  • Yi, Hyun Seok;Ahn, Sung Hun;Lee, Yong Hwan;Cheon, Myung Jae;Park, Hyeok Ju;Park, Mee Hwa;Lee, Yong Kyu
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.26-29
    • /
    • 2016
  • 웹 문서 추천 시스템에서는 유사한 내용의 문서임에도 불구하고 URL이 달라서 다른 문서로 인식하여 사용자에게 추천하는 데이터 희소성 문제가 있다. 여기서 기존 연구들은 이 문제에 대한 해결 방법으로 TF-IDF를 이용하였으나 비용 및 시간의 한계가 있으며 유의어 분류 문제가 있다. 본 논문에서는 Word2Vec을 이용한 웹문서 학습 시스템을 통해 문제를 해결한다. 제안 시스템은 언론사의 뉴스를 수집하고 이를 정형화된 형식으로 분석하여 가공하는 전처리 과정을 거친 후 Word2Vec 학습을 통해 문서 벡터를 생성하고 이를 K-Means 클러스터링으로 유사 문서군으로 분류한다. 이 시스템을 이용하면 데이터 희소성 문제를 해결할 뿐만 아니라 연산량이 TF-IDF에 비해 줄어들고 유의어 분류 시 유사도가 높아지는 강점이 있다.

Constructive Method for Terminology N-Gram using Wikipedia Document (위키피디아 문서를 이용한 전문용어 N-Gram 구축)

  • Choi, Jun-Ho;Go, Byung-Gyu;Lee, Jun;Kim, Pan-Koo
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.297-299
    • /
    • 2011
  • 자연어 처리 분야 중 현재 가장 활용도가 높은 분야는 질의어 추천기능, 단어 자동 완성 기능 등으로 정보검색에서 사용자가 입력한 문자들을 바탕으로 질의어를 완성해주는 것이다. 이러한 기능을 위해서는 문서 내용을 고려한 N-Gram 데이터 구축이 필수적이다. 본 논문에서는 문서 편집기나 검색엔진의 질의어 추천 등에 많이 활용되는 N-Gram 데이터의 전문용어별 구축을 위해 위키피디아 문서를 이용하는 방안을 제시하였다.

LDA Topic Modeling and Recommendation of Similar Patent Document Using Word2vec (LDA 토픽 모델링과 Word2vec을 활용한 유사 특허문서 추천연구)

  • Apgil Lee;Keunho Choi;Gunwoo Kim
    • Information Systems Review
    • /
    • v.22 no.1
    • /
    • pp.17-31
    • /
    • 2020
  • With the start of the fourth industrial revolution era, technologies of various fields are merged and new types of technologies and products are being developed. In addition, the importance of the registration of intellectual property rights and patent registration to gain market dominance of them is increasing in oversea as well as in domestic. Accordingly, the number of patents to be processed per examiner is increasing every year, so time and cost for prior art research are increasing. Therefore, a number of researches have been carried out to reduce examination time and cost for patent-pending technology. This paper proposes a method to calculate the degree of similarity among patent documents of the same priority claim when a plurality of patent rights priority claims are filed and to provide them to the examiner and the patent applicant. To this end, we preprocessed the data of the existing irregular patent documents, used Word2vec to obtain similarity between patent documents, and then proposed recommendation model that recommends a similar patent document in descending order of score. This makes it possible to promptly refer to the examination history of patent documents judged to be similar at the time of examination by the examiner, thereby reducing the burden of work and enabling efficient search in the applicant's prior art research. We expect it will contribute greatly.

Semantic Search and Recommendation of e-Catalog Documents through Concept Network (개념 망을 통한 전자 카탈로그의 시맨틱 검색 및 추천)

  • Lee, Jae-Won;Park, Sung-Chan;Lee, Sang-Keun;Park, Jae-Hui;Kim, Han-Joon;Lee, Sang-Goo
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.3
    • /
    • pp.131-145
    • /
    • 2010
  • Until now, popular paradigms to provide e-catalog documents that are adapted to users' needs are keyword search or collaborative filtering based recommendation. Since users' queries are too short to represent what users want, it is hard to provide the users with e-catalog documents that are adapted to their needs(i.e., queries and preferences). Although various techniques have beenproposed to overcome this problem, they are based on index term matching. A conventional Bayesian belief network-based approach represents the users' needs and e-catalog documents with their corresponding concepts. However, since the concepts are the index terms that are extracted from the e-catalog documents, it is hard to represent relationships between concepts. In our work, we extend the conventional Bayesian belief network based approach to represent users' needs and e-catalog documents with a concept network which is derived from the Web directory. By exploiting the concept network, it is possible to search conceptually relevant e-catalog documents although they do not contain the index terms of queries. Furthermore, by computing the conceptual similarity between users, we can exploit a semantic collaborative filtering technique for recommending e-catalog documents.

Simulation Study on E-commerce Recommender System by Use of LSI Method (LSI 기법을 이용한 전자상거래 추천자 시스템의 시뮬레이션 분석)

  • Kwon, Chi-Myung
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.3
    • /
    • pp.23-30
    • /
    • 2006
  • A recommender system for E-commerce site receives information from customers about which products they are interested in, and recommends products that are likely to fit their needs. In this paper, we investigate several methods for large-scale product purchase data for the purpose of producing useful recommendations to customers. We apply the traditional data mining techniques of cluster analysis and collaborative filtering(CF), and CF with reduction of product-dimensionality by use of latent semantic indexing(LSI). If reduced product-dimensionality obtained from LSI shows a similar latent trend of customers for buying products to that based on original customer-product purchase data, we expect less computational effort for obtaining the nearest-neighbor for target customer may improve the efficiency of recommendation performance. From simulation experiments on synthetic customer-product purchase data, CF-based method with reduction of product-dimensionality presents a better performance than the traditional CF methods with respect to the recall, precision and F1 measure. In general, the recommendation quality increases as the size of the neighborhood increases. However, our simulation results shows that, after a certain point, the improvement gain diminish. Also we find, as a number of products of recommendation increases, the precision becomes worse, but the improvement gain of recall is relatively small after a certain point. We consider these informations may be useful in applying recommender system.

  • PDF

Web Page Recommendation Using Percentage Of The Time In The Cluster (클러스터의 점유시간을 이용한 웹 페이지 추천 기법)

  • 신형섭;이충세
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10e
    • /
    • pp.130-132
    • /
    • 2002
  • 기존의 여러 동적 추천 시스템에서는 웹 페이지들 사이의 유사도와 로그 파일 안에들어 있는 사용자들의 패턴을 이용하였기 때문에 연관된 페이지 뿐 아니라 단순히 순차적으로 연결되는 문서를 추천 페이지로 제공할 수 있었다. 본 논문에서는 기존의 방식에 각 페이지가 점유하는 시간의 분석을 더하려 한다. Data를 여러 분야로 나눌 수 있는 전자상거래의 특성을 이용하여 개개의 클러스터로 분류된 사이트들의 로그파일을 분석하여 점유시간의 크기와 무의미하게 보내어 지는 시간을 가중치를 주어 구별해내는 결과를 바탕으로 사용자가 주로 방문하는 연관성이 높다고 판단되는 웹 페이지를 추천하는 방법을 제안한다.

  • PDF

News Article Recommender System By Relevance and Reinforcement Learning (관련성과 강화학습을 이용한 신문기사 추천시스템)

  • 상태종;손기준;박미성;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.229-231
    • /
    • 2004
  • 추천 시스템은 양질의 정보를 추천하기 위해서 사용자의 관심도를 반영해야 한다. 이를 위해 본 연구에서는 강화학습과 관련 정보, 비관련 정보를 모두 이용하는 피드백 방법을 결합하였다. 사용자의 문서에 대한 평가를 평가 값으로 사용하여 사용자가 선호하는 용어와 선호하지 않는 용어를 추출하고, 이를 이용해 사용자 프로파일을 강화학습으로 학습하게 된다. 제안된 방법으로 신문기사 추천시스템에 적용하여 실험한 결과, 관련 정보와 비관련 정보를 함께 사용한 방범이 기존의 관련 정보안물 사용한 방법보다 더 나은 성능을 보였다.

  • PDF

Documents recommendation using large citation data (거대 인용 자료를 이용한 문서 추천 방법)

  • Chae, Minwoo;Kang, Minsoo;Kim, Yongdai
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.5
    • /
    • pp.999-1011
    • /
    • 2013
  • In this research, we propose a document recommendation method which can find documents that are relatively important to a specific document based on citation information. The key idea is parameter tuning in the Neumann kernal which is an intermediate between a measure of importance (HITS) and of relatedness (co-citation). Our method properly selects the tuning parameter ${\gamma}$ in the Neumann kernal minimizing the prediction error in future citation. We also discuss some comutational issues needed for analysing large citation data. Finally, results of analyzing patents data from the US Patent Office are given.