• Title/Summary/Keyword: 무인항공체계

Search Result 105, Processing Time 0.023 seconds

Development of Autonomous Behavior Software based on BDI Architecture for UAV Autonomous Mission (무인기 자율임무를 위한 BDI 아키텍처 기반 자율행동 소프트웨어 개발)

  • Yang, Seung-Gu;Uhm, Taewon;Kim, Gyeong-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.312-318
    • /
    • 2022
  • Currently, the Republic of Korea is facing the problem of a decrease in military service resources due to the demographic cliff, and is pursuing military restructuring and changes in the military force structure in order to respond to this. In this situation, the Army is pushing forward the deployment of a drone-bot combat system that will lead the future battlefield. The battlefield of the future will be changed into an integrated battlefield concept that combines command and control, surveillance and reconnaissance, and precision strike. According to these changes, unmanned combat system, including dronebots, will be widely applied to combat situations that are high risk and difficult for humans to perform in actual combat. In this paper, as one of the countermeasures to these changes, autonomous behavior software with a BDI architecture-based decision-making system was developed. The autonomous behavior software applied a framework structure to improve applicability to multiple models. Its function was verified in a PC-based environment by assuming that the target UAV is a battalion-level surveillance and reconnaissance UAV.

Development of a Cost Effective Radio Communication System for UAS (무인항공기용 저비용 고효율 무선통신 시스템 개발)

  • Park, Sang-Hyuk;Kim, Sung-Su;Choi, Kee-Young;Park, Choon-Bae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.600-607
    • /
    • 2008
  • Reliable wireless transmission of data generated by the flight critical subsystems or mission equipments of the unmanned aerial system is critical for mission success. As the UAS system becomes more sophisticated, its dependency on a reliable high rate radio communication system also increases. This requirement is applied not only during the operation phase but also in the early development test phase. This paper introduces a practical cost-effective communication system for a UAS. The downlink module combines analog NTSC video signal with onboard data, and send them using 2.4 GHz carrier wave. The uplink system has less a severe requirement on the bandwidth, and thus uses 430 MHz signal. This paper also presents a sample packet structure which can be adopted for many UAS of similar class.

A Study on Configuration Management System for Unmanned Aircraft System Development (무인항공체계 개발을 위한 형상관리 방안 연구)

  • Song, Ji-Han;Choi, Yun Jeong;Cho, Ho Yun
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.8-15
    • /
    • 2015
  • Unmanned Aircraft System(UAS) is a huge and complicated system that is composed of UAV, ground control system, datalink system, and mission equipments. We have applied system engineering to development of UAS. Configuration management is very important activity for efficient developments. The Configuration management process comprises four distinct disciplines (Configuration identification, Configuration control, Configuration status accounting, and Configuration audit). This paper explains the configuration management system of UAS development project which ADD executes and introduces several examples of these four disciplines.

Research of a Development Plan on the Integrated Weapon System Database based on Integrated Operation and Management System for the Aircraft Development Management (항공기 체계운영관리시스템 기반의 통합무기체계데이터베이스 발전 방안 연구)

  • Chung, Joon-Young;Kim, Cheon-Youn;Kim, Jong-Jin;Lee, Sang-Bum
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.1 s.45
    • /
    • pp.269-276
    • /
    • 2007
  • National defense research and development is trying to develop the weapon system to satisfy users' requirements at minimum cost, high quality and the shortest period. Under integrated database computer environments, development processes and tools have been developed to implement system engineering and concurrent engineering systematically. In the aerospace defense weapon system, the fixed wing development department has developed and operated the integrated operation and management information system based on web technology to manage efficiently the technical information generated by the R&D process. When this system was applied to the existing R&D project for the aircraft weapon system, it proved and verified its efficiency. In this paper, we describe the future development plan of an integrated R&D framework and an integrated weapon system database based on the integrated operation and management information system which are able to centrol the technical information of KF-X, UAV(Unmanned Aerial Vehicles) and UCAV(Unmanned Combat Aerial Vehicles) programs. We also describe an interoperability and integration plan with WISEMAN which will be operated soon in our research Institute.

  • PDF

Characteristics Analysis of Accident Factors of UK Civil Unmanned Aircraft Using SHELL Model and HFACS (SHELL 모델과 HFACS를 활용한 영국 민간 무인 항공기 사고 요인 특징 분석)

  • Do Yun Kim;Jo Won Chang
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • The unmanned aerial vehicle industry has developed a lot, but the possibility of accidents is increasing due to potential risks. In this study, SHELL models and HFACS were used to analyze unmanned aerial vehicle accidents in the UK and to identify the main causes and characteristics of accidents. The main cause analyzed by the SHELL model was identified as an abnormality in the alarm system. The main cause of the accident analyzed by HFACS was identified as the technical environment. The common cause identified by the SHELL model and HFACS was identified as a mechanical problem of unmanned aerial vehicles. This is due to the lack of accurate information or functionality of the alarm system in the operator interface, which often prevents the operator from responding to sensitive information. Therefore, in order to prevent civil UAV accidents, the stability and reliability of the system must be secured through regular inspections of the UAV system and continuous software updates. In addition, an ergonomic approach considering human interfaces is needed when developing technologies.

A Study on the Status of Market, Technology and Legal System of the UAV and its Useful Policies (무인항공기 시장·기술·법제도 실태분석 및 정책적 대응방안 연구)

  • Park, Cheol-Soon
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.373-401
    • /
    • 2015
  • The UAV(Unmanned Aerial Vehicle, Drone) technology has been undergoing rapid progress, accompanied with a growth in the market. However, domestic industry standards and technology lag behind such progress happening on the international scene, and in particular in developed countries. Related regulations are also deemed lacking to address the issues that arise with such developments. Meanwhile, as the rise of UAV technology is a fairly recent phenomenon, the gap between Korea and developed countries is not too big. As this technology has high relevance to information and communication technologies, it also offers ample leeway for Korea to catch up in the field of UAV. As such, this paper seeks to provide a survey of the overall technology, market and regulations concerning UAV to identify possible measures on how to address any issues that may arise through proper policies. Due to the progress made in the field of UAV technology and increased penetration rate, striking a right balance between putting in place a proper regulatory system and establishing policies that foster growth in the field has risen as a very important issue. While the importance of establishing a legal system that helps prevent possible risks is indeed important, it must also be acknowledged that excessive regulation can also hinder technological progress. This, in turn would stagnate the market and dampen the entrepreneurial spirit in the society. In the case of new, practical technologies such as UAV, a prompt establishment of regulatory systems and policy measures in terms of policies is a requisite. In brief, in order to promote progress in the UAV industry and at the same time, for public safety and the protection of privacy, there should be an appropriate level on the easing and tightening of the regulation.

The Concrete Classification and Registration for sUAS (현행 법률상 비사업용 소형무인비행장치 신고 및 식별표시의무 강화 규정 도입의 필요성)

  • Kim, Sung-Mi
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.34 no.1
    • /
    • pp.125-157
    • /
    • 2019
  • Technological advancement and demand of sUAS (small Unmanned Aircraft System)are rapidly growing, which makes the current legal system unable to follow. Currently, Aviation Security Act and its subordinate law exclude the registration and certification for non-commercial purpose sUAS weighing less than 12kg. Despite this sUAS being the most popular model for consumer, there is no way to regulate them legally. When there is sUAS crash accident, the operator legally responsible for the occurrence damage cannot be identified. It has been an issue for a long time with the concrete classification and registration of sUAS, but it has not been introduced yet. It is obvious that damages caused by sUAS will be transferred not only to operators but also to third parties. Discussions on liability insurance for these sUAS are actively being held. But first, it is necessary to identify who will be responsible for the damage caused by the sUAS. In other words, even with the liability system established, without clarified operator the damage occurred cannot determine who is responsible. According to the cases of America and Germany, they have enforced the law of registration and identification obligated to 200g or 250g sUAS. Therefore, it is necessary to prepare regulations on concrete classification and registrations to identify for noncommercial purpose sUAS as soon as possible in Korea.

A Study of the UML modeling and simulation for an analysis and design of the reconnaissance UAV system (정찰용 무인기 체계 분석/설계를 위한 UML 모델링 및 시뮬레이션 연구)

  • Kim, Cheong-Young;Park, Young-Keun;Lee, Jun-Kyu;Kim, Myun-Yeol;Reu, Tae-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1112-1120
    • /
    • 2008
  • The real-time distributed simulation at the present age concentrates on the construction of a system development environment in order to accomplish a synthetic battlefield environment connected with Live-Virtual-Constructive simulation and to realize the Simulation Based Acquisition which supports the life cycle of weapon system. Accordingly this paper describes the development environment of the UML modeling and simulation which integrates the system analysis and design methods performed during the conceptual design phase of the reconnaissance UAV system development. An integrated framework linked with the UML simulation and X-plane visualization is suggested to efficiently perform the system analysis and design, and finally the implementation contents, the analysis of experiment results and concluding remarks are described.

A Study on how to use drones According to Domestic Coastal Safety System limitations (국내 연안 안전 체계 한계에 따른 드론의 활용방안)

  • Kim, Seung-Han;Kim, Hyo-Joong;Kim, Hyo-Kwan;Cho, So-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.118-127
    • /
    • 2021
  • In spite of various safety measures, coastal safety accidents continue to occur, so this study focused on using drones as countermeasures. Municipalities that already have coasts have begun operating unmanned multicopters for coastal safety management. In particular, by connecting an unmanned multi-copter to the currently applied smart city safety net system, it is possible to transmit real-time images of the scene in case of emergency in the coastal area to the local government safety information center. It is also expected to contribute significantly to strengthening safety management in coastal waters through a more rapid response to safety accidents. Therefore, in this paper, we propose the use of drones as an alternative to the limitations of the domestic coastal safety system by investigating the state of coastal safety accidents and analyzing the state of domestic coastal safety systems. In addition, it is expected to be a key breakthrough in the coastal area safety system by proposing a model linking the Korean K-Drone system.

Methodology of Test for sUAV Navigation System Error (소형무인항공기 항법시스템오차 시험평가 방법)

  • SungKwan Ku;HyoJung Ahn;Yo-han Ju;Seokmin Hong
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.510-516
    • /
    • 2021
  • Recently, the range of utilization and demand for unmanned aerial vehicle (UAV) has been continuously increasing, and research on the construction of a separate operating system for low-altitude UAV is underway through the development of a management system separate from manned aircraft. Since low-altitude UAVs also fly in the airspace, it is essential to establish technical standards and certification systems necessary for the operation of the aircraft, and research on this is also in progress. If the operating standards and certification requirements of the aircraft are presented, a test method to confirm this should also be presented. In particular, the accuracy of small UAV's navigation required during flight is required to be more precise than that of a manned aircraft or a large UAV. It was necessary to calculate a separate navigation error. In this study, we presented a test method for deriving navigation errors that can be applied to UAVs that have difficulty in acquiring long-term operational data, which is different from existing manned aircraft, and conducted verification tests.