• Title/Summary/Keyword: 무인전투기체계

Search Result 7, Processing Time 0.028 seconds

Study of the UCAS Susceptibility Parameters and Sensitivities by using Monte-Carlo Simulation (몬테카를로 모사법을 이용한 무인전투기의 위약도에 영향을 미치는 파라미터와 민감도에 대한 연구)

  • Choi, Kwang-Sik;Lee, Kyung-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.242-253
    • /
    • 2011
  • The typical missions for the current stand-off UAVs are surveillance and reconnaissance. On the other hand, the primary mission for the future UCAS will be combat mission such as SEAD under the man-made ultimately hostile environment including SAM, antiaircraft artillery, threat radar, etc. Therefore, one of the most important challenges in UCAS design is improvement of survivability. The current studies for aircraft combat survivability are focused on the improvement of susceptibility and vulnerability of manned aircraft system. Although the survivability design methodology for UCAS might be very similar to the manned combat system but there are some differences in mission environment, system configuration, performance between manned and unmanned systems. So the parameters and their sensitivities which affect aircraft combat survivability are different in qualitatively and quantitatively. The susceptibility related parameters for F-16 C/D and X-45A as an example of manned and unmanned system are identified and the susceptibility parameter sensitivities are analyzed by using Monte-Carlo Simulation in this study.

유인전투기의 장래-인간공학적 측면에서의 고찰

  • Kim, Gi-Seok
    • Defense and Technology
    • /
    • no.8 s.138
    • /
    • pp.60-67
    • /
    • 1990
  • 아마도 앞으로 10년간은 거의 모든 전투기에 인간이 조종사로서 계속 쓰일 것이 확실시 되며, 물론 무인기라든가 원격조종기의 이용도 해매다 늘어날 것이다. 또한 전쟁을 억지하는 일련의 체계중에서 인간이 중심적인 역할을 해나갈 것임에 틀림없다. 양질의 정보가 없이는 만족할만한 결심을 할수 없을 것이다. 만일 인간의 두뇌로 결정을 내려야 한다면 결정에 도움을 줄수 있는 정보를 정보의 홍수속에서 끌어낼수 있는 기술을 개발해야 할 것이다.

  • PDF

Development of an ACMI Simulator Based on LVC Integrating Architecture (LVC 통합 아키텍처 기반 실기동급 ACMI 모의기 개발)

  • Jang, Youngchan;Oh, Jihyun;Myung, Hyunsam;Kim, Cheonyoung;Hong, Youngseok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.540-547
    • /
    • 2015
  • This paper describes development contents and flight tests of an ACMI simulator based on LVC integrating architecture. ACMI is the system that provides air combat training and ground bombing training for improving fighting efficiency, that is the live simulation involving real people to operate real systems. ACMI simulator was developed for technic acquisition of LVC interoperability by using data link communication. ACMI simulator simulated maneuvering of a fighter by operating an UAV, a fighter can be distinguished from an UAV by maneuvering characteristics. This study proposes maneuvering simulation method by using flight data of the UAV, and performed its flight test for verifying similarity of fighter maneuvering.

A Methodology for Evaluating Mission Suitability of Manned-Unmanned Aircraft Teaming for SEAD Missions (SEAD 임무 수행을 위한 유x무인기 협업 체계의 임무적합도 평가 방법론 연구)

  • Seo, Wonik;Lee, Hyun Moo;Kim, Jeong-Hun;Choi, Keeyoung;Jee, Cheol-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.935-943
    • /
    • 2020
  • This paper presents a methodology for evaluating suitability of a manned-unmanned aerial vehicle team for a complicated mission. The study identified vehicle performance, equipment performance and level of autonomy as the key factors that affect the mission effectiveness. A manned and an unmanned aircraft were compared, and their performance was quantized in these respects. SEAD was chosen as a representative manned-unmanned team mission. The SEAD mission was broken down to a sequence of tasks. Mission experts evaluated the importance of each mark item for the mission legs. Combining the results showed proper type of aircraft for each leg depending on the complexity, safety, and importance of the task. Finally, the whole mission plan was laid out as a time-based sequence which alleviate pilot workload significantly.

Research of Development Plan on the System Operation Management System based on the Integrated Weapon System Database (IWSDB) (통합무기체계 데이터베이스 기반의 체계운영관리시스템 발전방향연구)

  • Chung, Joon-Young;Lee, Joon-Woo;Kim, Cheon-Young;Kim, Jong-Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.57-60
    • /
    • 2007
  • 국방 연구개발은 사용군의 요구사항을 만족시키는 무기체계를 최단 기간, 최소 비용 및 고품질로 개발하고자 노력하고 있으며, 통합 무기체계 데이터베이스 전산 환경 하에서 체계공학 및 동시공학을 체계적으로 구현하기 위한 연구개발 프로세스 및 도구들이 개발되고 있다. 항공 무기체계 분야에서 본 논문의 연구개발 과정에서 생성되는 기술 자료를 효율적으로 관리하기 위한 웹기반 체계운영관리시스템을 개발 및 운용하고 있으며, 기존 항공 무기체계 연구개발 사업에 적용하여 그 효율성을 입증 및 검증하였다. 이에 본 논문에서는 통합 무기체계 데이터베이스 기반으로 향후 개발 예정인 보라매 사업, 무인항공기 및 무인전투기에 적용 가능한 통합 연구개발 프레임웍(Framework) 및 체계운영관리시스템의 발전 방안에 대해서 기술한다.

  • PDF

Research of a Development Plan on the Integrated Weapon System Database based on Integrated Operation and Management System for the Aircraft Development Management (항공기 체계운영관리시스템 기반의 통합무기체계데이터베이스 발전 방안 연구)

  • Chung, Joon-Young;Kim, Cheon-Youn;Kim, Jong-Jin;Lee, Sang-Bum
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.1 s.45
    • /
    • pp.269-276
    • /
    • 2007
  • National defense research and development is trying to develop the weapon system to satisfy users' requirements at minimum cost, high quality and the shortest period. Under integrated database computer environments, development processes and tools have been developed to implement system engineering and concurrent engineering systematically. In the aerospace defense weapon system, the fixed wing development department has developed and operated the integrated operation and management information system based on web technology to manage efficiently the technical information generated by the R&D process. When this system was applied to the existing R&D project for the aircraft weapon system, it proved and verified its efficiency. In this paper, we describe the future development plan of an integrated R&D framework and an integrated weapon system database based on the integrated operation and management information system which are able to centrol the technical information of KF-X, UAV(Unmanned Aerial Vehicles) and UCAV(Unmanned Combat Aerial Vehicles) programs. We also describe an interoperability and integration plan with WISEMAN which will be operated soon in our research Institute.

  • PDF

A Study on Deep Learning based Aerial Vehicle Classification for Armament Selection (무장 선택을 위한 딥러닝 기반의 비행체 식별 기법 연구)

  • Eunyoung, Cha;Jeongchang, Kim
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.936-939
    • /
    • 2022
  • As air combat system technologies developed in recent years, the development of air defense systems is required. In the operating concept of the anti-aircraft defense system, selecting an appropriate armament for the target is one of the system's capabilities in efficiently responding to threats using limited anti-aircraft power. Much of the flying threat identification relies on the operator's visual identification. However, there are many limitations in visually discriminating a flying object maneuvering high speed from a distance. In addition, as the demand for unmanned and intelligent weapon systems on the modern battlefield increases, it is essential to develop a technology that automatically identifies and classifies the aircraft instead of the operator's visual identification. Although some examples of weapon system identification with deep learning-based models by collecting video data for tanks and warships have been presented, aerial vehicle identification is still lacking. Therefore, in this paper, we present a model for classifying fighters, helicopters, and drones using a convolutional neural network model and analyze the performance of the presented model.