• Title/Summary/Keyword: 무격자법

Search Result 27, Processing Time 0.023 seconds

Review and Analysis of Boundary Conditions for SPH Particles (SPH 입자의 경계조건 분석 및 해석)

  • Lee, Min-A;Tak, Moon-Ho;Park, Tae-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.756-759
    • /
    • 2011
  • 일반적으로 컴퓨터를 이용한 수치 해석에는 격자 수치 해석 방법인 유한요소법 또는 유한차분법이 주로 사용되어 왔다. 그러나 이러한 방법들은 해석하고자 하는 영역을 요소나 격자 등으로 분할해야 하기 때문에 복잡한 현상들을 다루는 데 어려움을 갖게 된다. 이를 극복하기 위해 개발된 방법이 무요소법(Meshfree Method)이며 본 논문에서는 다양한 무요소법들 중 SPH(Smoothed Particle Hydrodynamics)가 고려되어진다. SPH는 라그랑지안 수치 근사 기법을 사용하는 입자법(Particle Method)으로 SPH를 정확하게 실행하기 위해서는 적절한 경계 처리법이 요구된다. 그러나 기존의 경계 처리법은 유체 입자의 침투현상 및 커널(Kernel) 끊김 현상이 발생하기 때문에 적합하지 않다. 따라서 지금까지 SPH의 경계 처리법을 향상시키기 위해 다양한 접근법들이 제안되었으며 본 논문에서는 이러한 접근법들 중 정반사(Specular Reflection), 재회복(Bounce-back), 재도입(Reintroduce) 방법 및 경계 반발력(Repulsive Force)과 가상 입자(Ghost Particle)의 적용이 분석되고 현상 접목을 통해 적절한 경계 처리법이 제안되어진다.

  • PDF

NUMERICAL STUDY ON TWO-DIMENSIONAL INCOMPRESSIBLE VISCOUS FLOW BASED ON GRIDLESS METHOD (2차원 비압축성 점성유동에 관한 무격자법 기반의 수치해석)

  • Jeong, S.M.;Park, J.C.;Heo, J.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.93-100
    • /
    • 2009
  • The gridless (or meshfree) methods, such as MPS, SPH, FPM an so forth, are feasible and robust for the problems with moving boundary and/or complicated boundary shapes, because these methods do not need to generate a grid system. In this study, a gridless solver, which is based on the combination of moving least square interpolations on a cloud of points with point collocation for evaluating the derivatives of governing equations, is presented for two-dimensional unsteady incompressible Navier-Stokes problem in the low Reynolds number. A MAC-type algorithm was adopted and the Poission equation for the pressure was solved successively in the moving least square sense. Some typical problems were solved by the presented solver for the validation and the results obtained were compared with analytic solutions and the numerical results by conventional CFD methods, such as a FVM.

NUMERICAL STUDY ON TWO-DIMENSIONAL INCOMPRESSIBLE VISCOUS FLOW BASED ON GRIDLESS METHOD (2차원 비압축성 점성유동에 관한 무격자법 기반의 수치해석)

  • Jeong, S.M.;Park, J.C.;Heo, J.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.239-244
    • /
    • 2009
  • The gridless (or meshfree) methods, such as MPS, SPH, FPM an so forth, are feasible and robust for the problems with moving boundary and/or complicated boundary shapes, because these methods do not need to generate a grid system. In this study, a gridless solver, which is based on the combination of moving least square interpolations on a cloud of points with point collocation for evaluating the derivatives of governing equations, is presented for two-dimensional unsteady incompressible Navier-Stokes problem in the low Reynolds number. A MAC-type algorithm was adopted and the Poission equation for the pressure was solved by successively in the moving least square sense. Some weighing functions were tested in order to investigate the up-winding effect for the convection term. Some typical problems were solved by the presented solver for the validation and the results obtained were compared with analytic solutions and the numerical results by conventional CFD methods, such as FVM.

  • PDF

Adaptive Element-free Galerkin Procedures by Delaunay Triangulation (Delaunay 삼각화를 이용한 적응적 Element-free Galerkin 해석)

  • 이계희;정흥진;최창근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.525-535
    • /
    • 2001
  • In this paper, a new adaptive analysis scheme for element-free Galerkin method(EFGM) is proposed. The novel point of this scheme is that the triangular cell structure based on the Delaunay triangulation is used in the numerical integration and the node adding/removing process. In adaptive analysis with this scheme, there is no need to divide the integration cell and the memory cell structure. For the adaptive analysis of crack propagation, the reconstruction of cell structure by adding and removing the nodes on integration cells based the estimated error should be carried out at every iteration step by the Delaunay triangulation technique. This feature provides more convenient user interface that is closer to the real mesh-free nature of EFGM. The analysis error is obtained basically by calculating the difference between the values of the projected stresses and the original EFG stresses. To evaluate the performance of proposed adaptive procedure, the crack propagation behavior is investigated for several examples.

  • PDF

Aerodynamic Design and Analysis on 1600kW Class Propeller Blade (1600kW급 프로펠러 블레이드 공력설계 및 해석)

  • Choi, Won;Kim, Kwang-Hae;Won, Young-Su;Lee, Won-Joong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.19-24
    • /
    • 2012
  • Propeller shall have high efficiency and improved aerodynamic characteristics to get the thrust to fly at high speed for the turboprop aircraft. That is way Clark-Y airfoil which is used to conventional 1600kW class aircraft propeller is selected as a blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the propeller design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point of turboprop aircraft. The propeller design results indicate that is evaluated to be properly constructed, through analysis of propeller aerodynamic characteristics using the Meshless method and MRF, SM method.

DEVELOPMENT OF A ROBUST MESHLESS METHOD FOR 2-D COMPRESSIBLE FLOW (2차원 압축성 유동 해석을 위한 강건한 무격자 해석기법 개발)

  • Huh, J.Y.;Rhee, J.S.;Kim, K.H.;Jung, S.Y.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.85-90
    • /
    • 2014
  • The purpose of this study is to develop a new Meshless Method to solve 2-D compressible flow problems numerically. This paper includes a revised Least Square method that improves robustness compared with its original version by removing excessive numerical oscillation which occurs when points are randomly distributed. Numerical analyses of hypersonic flow over a blunt body were carried out using the method, then robustness, accuracy and convergence of their results were compared with those obtained from the original method.

An Adaptive Analysis in the Element-free Galerkin Method Using Bubble Meshing Technique (Bubble Mesh기법을 이용한 적응적 EFG해석)

  • 정흥진;이계희;최창근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.85-94
    • /
    • 2002
  • In this study an adaptive node generation procedure in the Element-free Galerkin (EFG) method using bubble-meshing technique is Proposed. Since we construct the initial configuration of nodes by subdivision of background cell, abrupt changes of inter-nodal distance between higher and lower error regions are unavoidable. This unpreferable nodal spacing induces additional errors. To obtain the smooth nodal configuration the nodal configurations are regenerated by bubble-meshing technique. This bubble meshing technique was originally developed to generate a set of well-shaped triangles and tetrahedra. In odder to evaluate the effect of abrupt changes of nodal spacing, one-dimensional problems with various nodal configurations mere investigated. To demonstrate the performance of proposed scheme, the sequences of making optimal nodal configuration with bubble meshing technique are investigated for several problems.

SPH Simulation of Hydraulic Jumps (SPH에 의한 도수의 모의)

  • Ha, Sung-Won;Lee, Nam-Joo;Yu, Kwon-Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.151-151
    • /
    • 2011
  • 평활입자동역학법(SPH, Smoothed Particle Hydrodynamics)은 도수, 댐붕괴류, 쇄파 등과 같이 수면 변동이 큰 유체 역학 문제를 해결하기 위한 무격자법 중의 하나이다. SPH법을 이용하여 1.5에서 8.0 범위의 여러 가지 Froude 수에 대하여 도수를 모의하였다. 또한, SPH의 모의 결과와 비교 검토하기 위해 실험실 수로에 물리모형을 구축하였다. 도수 전면의 위치와 도수 후의 수심을 대상으로 수리실험과 수치모의 결과를 비교하였다. 그 결과 Froude 수가 5 미만일 때, 수치모의결과는 물리 모형과 비교적 잘 일치하였으나, Froude 수가 클 때는 오차가 커지는 경향을 보였다. 이처럼 수치 모의의 결과가 물리 모형과 차이를 보이는 주요 이유는 점성의 처리와 난류에 따른 와도와 관련이 있는 것으로 알려져 있다. 따라서, 이 문제는 난류모형을 도입하면 어느 정도 개선될 수 있을 것으로 판단된다.

  • PDF

A Pollutant Transport Model by the Forward-Tracking Method (전방추적법에 의한 오염물질의 전송 모델)

    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.1
    • /
    • pp.37-44
    • /
    • 1998
  • In this study a new hybrid method is developed for solving flow-dominated transport problems accurately and effectively. The method takes the forward-tracking particle method for advection. However, differently from the random-walk Lagrangian approach it solves the diffusion process on the fixed Eulerian grids. Therefore, neither any interpolating algorithm nor a large enough number of particles is required. The method was successfully examined for both cases of instantaneous and continuous sources released at a point. Comparison with a surrounding 5-point Hermite polynomial method (Eulerian-Lagrangian method) and the random-walk pure Lagrangian method shows that the present method is superior in result accuracy and time-saving ability.

  • PDF

Design of Polarization-Insensitive Directional Couplers and Multimode Interference Couplers Integrated with Bragg Grating Waveguide (Bragg 격자구조가 집적된 편광 무의존성 방향성 결합기와 다중모드 간섭 결합기의 설계)

  • Ho, Kwang-Chun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.295-302
    • /
    • 2007
  • This paper presents a rigorous comparison of the design characteristics of polarization-insensitive directional coupler (DC) and multimode interference (MMI) coupler based on rib type waveguides, by using longitudinal modal transmission-line theory (L-MTLT). It shows that the multimode mixing and interference property of MMI can be structurally designed through the continuous evolution of the two-mode coupling property of DC. It also compares and analyzes the coupling efficiency along with the coupling length and the wavelength between polarization-insensitive DC and MMI. From the design properties obtained, it demonstrates for the first time the integration of polarization-insensitive DC or MMI with a Bragg grating and evaluates precisely the filtering characteristics. The numerical results reveal that the DC, as long as it is designed to have the same coupling length for TE and TM modes, has better performance than the MMI in polarization-insensitive filtering behaviour. However, it shows that the MMI with much less coupling length than DC is preferred in the miniaturization of integrated devices.