• Title/Summary/Keyword: 몰리브덴 광화작용

Search Result 13, Processing Time 0.033 seconds

Major Molybdenum Mineralization and Igneous Activity, South Korea (남한의 주요 몰리브덴 광화작용과 화성활동)

  • Choi, Seon-Gyu;Koo, Min-Ho;Kang, Heung-Suk;Ahn, Yong-Hwan
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.109-122
    • /
    • 2011
  • The major Mo deposits in South Korea were formed during the Jurassic Daebo orogeny, the Late Cretaceous and the Tertiary post-orogenic igneous activities, and are characterized by a variety of genetic types such as pegmatite, greisen, skarn, porphyry and vein types. The Jangsu mine is a pegmatite-style deposit which is genetically related to the Jurassic ilmenite-series two-mica granite with the Mo mineralization age of $159.6{\pm}4.5$ Ma. The Geumseong mine occurs as a skarn/porphyry-style deposit associated with highly fractionated granite. Its age of Mo mineralization within aplitic cupola is about 96.5~l07.5 Ma. The Yeonil mine is a porphyry-style deposit, and the Geumeum mine is a veinlet-style deposit along the fracture zone with their mineralization ages of $58.4{\pm}1.6$ and $54.4{\pm}1.2$ Ma, respectively. The contrasts in the style of Mo mineralization in Korea reflect the different environment of the related magmatism. The Jurassic mineralization, being related to deep-seated granitoids, occurs as a pegmatite-style deposit, whereas the Cretaceous one, being related to subvolcanic granitoids, occurs as skarn/porphyry/vein-type ore deposits. The Tertiary Mo mineralization has a close relationship with the igneous activities associated with the Tertiary basin formation along the east coast, Korean peninsular.

The Skarnification and Fe-Mo Mineralization at Lower Part of Western Shinyemi Ore Body in Taeback Area (태백지역 신예미 서부광체 하부의 스카른화작용 및 철-몰리브덴 광화작용)

  • Seo, Ji-Eun;Kim, Chang-Seong;Park, Jung-Woo;Yoo, In-Kol;Kim, Nam-Hyuck;Choi, Seon-Gyu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.35-46
    • /
    • 2007
  • Shinyemi skarn deposits occur as Fe-Mo skarn type and Pb-Zn-Cu hydrothermal replacement type along the contact between Cretaceous Shinyemi granitoids and Cambro-Ordovician mixed limestone and dolostone sequence of the Choseon Supergroup. In the lower part of Western Shinyemi ore body two stages of skarn formation have been observed: the early, stage I (magnesian) skarn with Fe mineralization and the late, stage II(calcic) skarn with Mo mineralization. The stage I skarn spatially is overprinted by stage II skarn. The stage I skarn is predominantly composed of olivine, magnetite and diopside whereas, the stage II skarn is dominated by hedenbergite and garnet. The skarnification process occurred in two stages, both prograde and retrograde for stage I and stage II skarns. In stage I, the prograde skarns, mainly composed of anhydrous silicate minerals, were formed at relatively higher temperatures (about $400\;to\;550^{\circ}C$) under low $CO_{2}$ fugacity ($X_{CO2}<0.1$) conditions. On the other hand, the retrograde skarns that consisted of hydrous minerals were formed at lower temperatures (about $300\;to\;400^{\circ}C$).

A Study on the Characteristics of W-Mo Ore Deposit in Bayan-Onjuul, Mongolia Using Magnetic Data (자력자료를 이용한 몽골 바얀온줄 텅스텐-몰리브덴 광화대 특성 연구)

  • Park, Gyesoon;Lee, Bum Han;Kim, In-Joon;Heo, Chul-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.202-208
    • /
    • 2014
  • KIGAM (Korea Institute of Geoscience and Mineral Resources) and MRAM (Mineral Resources Authority of Mongolia) performed joint survey on Bayan-Onjuul W-Mo mineralized area. Following the survey, we carried out magnetic survey. W-Mo occurrences are located with keeping a certain distance from the northern boundary of granite which has higher magnetic susceptibility values. Also, the 3D imaging results of magnetic inversion show that granite bodies are extended to the W-Mo occurrence areas from the deep main body with decreasing of susceptibility. The results of magnetic data analysis are well matched with the general characteristics of ore solution involved with W mineralization. The further study about the hidden ore deposits which have similar spatial relationship between granite and known WMo occurrences are necessary to improve the economic feasibility.

Characteristics of the Copper Mineralization in Tsogttsetsii Area, Mongolia (몽골 촉트체치 지역의 동 광화작용 특성)

  • Davaasuren, Otgon-Erdene;Lee, Bum Han;Kim, In Joon;Ryoo, Chung-Ryul;Heo, Chul-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.23-34
    • /
    • 2016
  • Tsogttsetsii area, an intrusive complex associated with Cu porphyry mineralization, is located in the Gurvansaikhan island arc terrane of the Central Asian Orogenic belt, Southern Mongolia. We performed a reconnaissance survey in Tsogttsetsii area. Cu mineralization in Tsogttsetsii area is porphyry Cu type related with alkali granite intruded in Permian. Mineralogical and textural properties of the ores and associated minerals were analyzed using X-ray diffraction, thin section petrography, and Scanning electron microscopy-Energy dispersive spectroscopy (SEM-EDS). Ore minerals identified in polarizing microscope are magnetite, pyrite and bornite. Propylitic alteration zone occurs broadly in the area where malachite occurrences are shown to be spread intensively in alkali granite area. Quartz, sericite, chlorite and epidote were observed in the alteration zone samples. As results of XRD and SEM-EDS analysis, samples of copper oxides were composed mainly of malachite, cuprite and small amounts of quartz. Average and maximum Cu contents of samples collected from malachite occurrences area are 759 ppm and 6190 ppm, respectively. The characteristics of mineralization in Tsogttsetsii area is similar to Oyu Tolgoi Cu-Au (Mo) deposit and Tsagaan Suvarga Cu-Mo deposit which are 56 km south and 120 km northeast from Tsogttsetsii area, respectively. Characteristics of the study area, such as the geology, tectonic environment, lithology, mineralization, and alterations of the rocks within the survey area, resemble the characteristics of other porphyry deposits. Therefore further exploration including Induced Polarization (IP) survey for identifying subsurface orebody is required.

Geochemical Exploration for the Bougouni Area in Mali (말리 부구니 지역에 대한 지화학탐사)

  • Kim, In-Joon
    • Economic and Environmental Geology
    • /
    • v.41 no.5
    • /
    • pp.563-575
    • /
    • 2008
  • The ore depositional and geochemical exploration on Bougouni area in Mali, central-western Africa covering $2,000\;Km^2$ was conducted for determining the detailed survey area. According to the results of this exploration, the highly potential area for the zinc-tin-gold-silver mineralization was found in Kolani and Riarako areas. The contents of zinc in heavy sand collected in the stream sediments range from 14 to 8,600 ppm, while the mean values of zinc in this area are 543 ppm with threshold($x+2{\sigma}$) of zinc anomalies being 1,000 ppm in Bougouni area. Generally zinc anomalies are associated with the tin and molybdenum anomalies and hence the anomalous area was selected for the detailed survey area for tracing the primary zinc and precious ore deposits related to these anomalies in following project.

Evolution of Hydrothermal Fluids at Daehwa Mo-W Deposit (대화 Mo-W 열수 맥상 광상의 유체 진화 특성)

  • Jo, Jin Hee;Choi, Sang Hoon
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • The Daehwa Mo-W deposit is located within the Gyeonggi massif. Quartz and calcite vein mineralization occurred in the Precambrian gneiss and Jurassic granites. Three main types (Type I: liquid-rich $H_2O$ type, Type II: vapor-rich $H_2O$ type, Type III: $CO_2-H_2O$ type) of fluid inclusions were observed and are classified herein based on their phase relations at room temperature. Within ore shoots, type III fluid inclusions have been classified into four subtypes (type IIIa, IIIb, IIIc and IIId) based on their volume percent of aqueous and carbonaceous ($CO_2$) phase at room temperatures combined with their total homogenization behavior and homogenization behavior of $CO_2$ phase. Homogenization temperatures of primary type I fluid inclusions in the quartz range from $374^{\circ}C$ to $161^{\circ}C$ with salinities between 13.6 and 0.5 equiv. wt.% NaCl. Homogenization temperatures of primary type III fluid inclusions in quartz of main generation, are in the range of $303^{\circ}C$ to $251^{\circ}C$. Clathrate melting temperatures of the type III fluid inclusions were 7.3 to $9.5^{\circ}C$, corresponding to salinities of 5.2 to 1.0 equiv. wt. % NaCl. Melting and homogenization temperatures of $CO_2$ phase of type III fluid inclusions were -57.4 to $-56.6^{\circ}C$ and 29.0 to $30.8^{\circ}C$, respectively. Fluid inclusion data indicate a complex geochemical evolution of hydrothermal fluids. The Daehwa early hydrothermal system is characterized by $H_2O-CO_2$-NaCl fluid at about $400^{\circ}C$. The main mineralization occurred by $CO_2$ immiscibility at temperatures of about 300 to $250^{\circ}C$. At the late base-metal mineralization aqueous fluid formed by mixing with cooler and less saline meteoric groundwater.

Geochemistry and Genesis of Hydrothermal Cu Deposits in the Gyeongsang Basin, Korea : Hwacheon-ri Mineralized Area (경상분지내 열수동광상의 지화학 및 성인연구 : 화천리지역 광화대)

  • So, Chil-Sup;Choi, Sang-Hoon;Yun, Seong-Taek
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.337-350
    • /
    • 1995
  • The Hwacheon-ri mineralized area is located within the Cretaceous Gyeongsang Basin of the Korean peninsula. The mineralized area includes the Hwacheon, Daeweon, Kuryong and Cheongryong mines. Each of these mines occurs along copper-bearing hydrothermal quartz veins that crosscut late Cretaceous volcanic rocks, although some disseminated ores in host rocks also exist locally. Mineralization can be separated into three distinct stages (I, II, and III) which developed along preexisting fracture zones. Stage I is ore-bearing, whereas stages II and III are barren. The main phase of ore mineralization, stage I, can be classified into three substages (Ia, Ib and Ic) based on ore mineral assemblages and textures. Substage Ia is characterized by pyrite-arsenopyrite-molybdenite-pyrrhotite assemblage and is most common at the Hwacheon deposit. Substage Ib is represented by main precipitation of Cu, Zn, and Pb minerals. Substage Ic is characteristic of hematite occurrence and is shown only at the Kuryong and Cheongryong deposits. Some differences in the ore mineralization at each mine in the area suggest that the evolution of hydrothermal fluids in the area varied in space (both vertically and horizontally) with respect to igneous rocks relating the ore mineralization. Fluid inclusion data show that stage I ore mineralization mainly occurred at temperatures between ${\approx}350^{\circ}$ and ${\approx}200^{\circ}C$ from fluids with salinities between 9.2 and 0.5 wt.% eq. NaCl. In the waning period of substage Ia, the high temperature and salinity fluid gave way to progressively cooler, more dilute fluids of later substage Ib and Ic (down to $200^{\circ}C$, 0 wt.% NaCl). There is a systematic decrease in the calculated ${\delta}^{18}O_{H2O}$ values with paragenetic time in the Hwacheon-ri hydrothermal system from values of ${\approx}2.7$‰ for substage Ia, through ${\approx}-2.8$‰ for substage Ib, to ${\approx}-9.9$‰ for substage Ic. The ${\delta}D$ values of fluid inclusion water also decrease with decreasing temperature (except for the Daeweon deposit) from -62‰ (substage Ia) to -80‰ (substage Ic and stage III). These trends are interpreted to indicate the progressive cooler, more oxidizing unexchanged meteoric water inundation of an initial hydrothermal system which is composed of highly exchanged meteoric water. Equilibrium thermodynamic interpretation of the mineral assemblages with the variation in amounts of chalcopyrite through the paragenetic time, and the evolution of the Hwacheon-ri hydrothermal fluids indicate that the solubility of copper chloride complexes in the hydrothermal system was mainly controlled by the variation of temperature and $fo_2$ conditions.

  • PDF