• Title/Summary/Keyword: 몬테칼로 선량 계산

Search Result 66, Processing Time 0.026 seconds

An Off-Site Consequence Modeling for Accident Using Monte Carlo Method (몬테칼로 방법을 사용할 사고후 영향 평가모델)

  • Chang Sun Kang;Sae Yul Lee
    • Nuclear Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.136-140
    • /
    • 1984
  • A new medal is presented in order to evaluate the risk from a nuclear facility following accidents directly combining the on-site meteorological data using the Monte Carlo Method. To estimate the radiological detriment to the surrounding population-at-large (collective dose equivalent), in this study the probability distribution of each meteorological element based upon on-site data is analyzed to generate atmospheric dispersion conditions. The random sampling is used to select the dispersion conditions at any given time of effluent releases. In this study it is considered that the meteorological conditions such as wind direction, speed and stability are mutually independent and each condition satisfies the Markov condition. As a sample study, the risk of KNU-1 following the large LOCA was calculated, The calculated collective dose equivalent in the 50 mile region population from the large LOCA with 50 percent confidence level is 2.0$\times$10$^2$ man-sievert.

  • PDF

Design of a Badge Filter System for Measurement of Hp(10) with the New Type of TL Dosimeter $CaSO_4:Dy,P$ (신형 TL 선량계인 $CaSO_4:Dy,P$를 이용한 Hp(10) 측정용 배지의 필터체계 설계)

  • Kim, H.K.;Kwon, J.W.;Lee, J.K.;Kim, J.L.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.79-85
    • /
    • 2003
  • This study was intended to estimate Hp(10) recommended by the ICRU using the $CaSO_4:Dy,P$ element developed in the KAERI. For the estimation of Hp(10), TL response should be compensated properly through the energy range using filter materials since $CaSO_4:Dy,P$ is of severe photon energy dependent response. Various experiments and computations using Monte Carlo Code were carried out for designing filter satisfying the performance requirements of the ISO related to TL dosimeter. Under the completed filter, the relative response of $CaSO_4:Dy,P$ showed $0.75{\sim}1.0$ for photons in the range of $20{\sim}662keV$. Especially it was possible to reduce the thickness of front filter and simplify the filter combination with rear filter of larger diameter and to considerably improve angular dependence by introducing taper to the filler.

Characterization of Radiation Field in the Steam Generator Water Chambers and Effective Doses to the Workers (증기발생기 수실의 방사선장 특성 및 작업자 유효선량의 평가)

  • Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.215-223
    • /
    • 1999
  • Characteristics of radiation field in the steam generator(S/G) water chamber of a PWR were investigated and the anticipated effective dose rates to the worker in the S/G chamber were evaluated by Monte Carlo simulation. The results of crud analysis in the S/G of the Kori nuclear power plant unit 1 were adopted for the source term. The MCNP4A code was used with the MIRD type anthropomorphic sex-specific mathematical phantoms for the calculation of effective doses. The radiation field intensity is dominated by downward rays, from the U-tube region, having approximate cosine distribution with respect to the polar angle. The effective dose rates to adults of nominal body size and of small body size(The phantom for a 15 year-old person was applied for this purpose) appeared to be 36.22 and 37.06 $mSvh^{-1}$) respectively, which implies that the body size effect is negligible. Meanwhile, the equivalent dose rates at three representative positions corresponding to head, chest and lower abdomen of the phantom, calculated using the estimated exposure rates, the energy spectrum and the conversion coefficients given in ICRU47, were 118, 71 and 57 $mSvh^{-1}$, respectively. This implies that the deep dose equivalent or the effective dose obtained from the personal dosimeter reading would be the over-estimate the effective dose by about two times. This justifies, with possible under- or over- response of the dosimeters to radiation of slant incidence, necessity of very careful planning and interpretation for the dosimetry of workers exposed to a non-regular radiation field of high intensity.

  • PDF

Design of a TL Personal Dosimeter Identifiable PA Exposure and Development of Its Dose Evaluation Algorithm (후방피폭선량계측이 가능한 TL 개인선량계의 설계 및 선량평가 알고리즘 개발)

  • Kwon, J.W.;Kim, H.K.;Yang, J.S.;Kim, J.L.;Lee, J.K.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.3
    • /
    • pp.179-186
    • /
    • 2004
  • A single-dosimeter worn on the anterior surface of body of a worker was found to provide significant underestimation of dose to the worker when radiation comes from behind of the human body. Recently, several researchers suggested that this kind of underestimation can be corrected to a certain extent by using an extra dosimeter on the back. But this multiple dosimetry also has the disadvantages like overestimation lowering work efficiency or cost burden. In this study, a single dosimeter introducing asymmetric filters enabled to identify PA exposure was designed by monte-carlo simulation and experiments and its dose evaluation algorithm for AP-PA mixed radiation field was established. This algorithm was applicable to penetrating radiation which had the effective energy more than 100 keV. Besides, the dosimeter and algorithm in this study were possible to be applied to near PA exposure.

Evaluation of the Radiochromic Film Dosimetry for a Small Curved Interface (휘어진 경계에서의 좁은 영역에 대한 Radiochromic 필름 도시메트리 평가)

  • Kang, Sei-Kwon;Park, Soah;Hwang, Taejin;Cheong, Kwang-Ho;Han, Taejin;Kim, Haeyoung;Lee, Me-Yeon;Kim, Kyoung Ju;Bae, Hoonsik
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.234-238
    • /
    • 2012
  • A tumor on the eyelid is often treated using a high-energy electron beam, with a metallic eye shield inserted between the eyelid and the eyeball to preserve the patient's sight. Pretreatment quality assurance of the inner eyelid dose on the metallic shield requires a very small dosimetry tool. For enhanced accuracy, a flexible device fitting the curved interface between the eyelid and the shield is also required. The radiochromic film is the best candidate for this device. To measure the doses along the curved interface and small area, a 3-mm-wide strip of EBT2 film was inserted between the phantom eyelid and the shield. After irradiation with 6 MeV electron beams, the film was evaluated for the dose profile. An acrylic eye shield of the same size as the real eye shield was machined, and CT images free from metal artifacts were obtained. Monte Carlo simulation was performed on the CT images, taking into account eye shield material, such as tungsten, aluminum, and steel. The film-based interface dose distribution agreed with the MC calculation within 2.1%. In the small (millimeter scale) and curved region, radiochromic film dosimetry promises a satisfactory result with easy handling.

Determination of Proton Beam Position Based on Prompt Gamma Ray Detection (즉발감마선을 이용한 양성자 빔 위치 측정에 관한 연구)

  • Seo, Kyu-Seok;Kim, Jong-Won;Kim, Chan-Hyeong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.69-71
    • /
    • 2004
  • The proton therapy of radiation therapy methods using Bragg Peak which is proton beam's characteristic dose distribution can give a normal tissue lower dose than cancer, comparing with the former existing radiation therapy methods. For exact treatment and patient' safety, we need to know proton beam's position in body, but a proton beam completely stops at treatment region and proton beam's range is uncertainly made by the variety of organs having each different density, so we aren't able to find a proton beam' position by suitable methods yet. With Monte Carlo Computing Method, as a result that we had simulated prompt gamma detection system using correlation of proton beam's absorbed dose distribution about water and prompt gamma distribution by nuclear interaction occurred by collisions of proton and water's hydrogen atoms, we could confirm that a proton beam's position was able to detect by using simulated prompt gamma detection system in body on the real-time

  • PDF

A Study on the Analysis of Radiation Dose for Thermoplastic Material and 3D Print Filament Materials (열가소성 플라스틱 재질과 3D 프린트 필라멘트 재질에 대한 방사선량 분석에 관한 연구)

  • Lee, Dong-Yeon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.181-189
    • /
    • 2021
  • This study is a prior research to manufacture a thermoplastic mask, which is a fixture used in radiation therapy, by 3D printing. It proceeded to analyze the filament material that can replace the thermoplastic. Among the commercially available filament materials, a material having similar characteristics to that of a thermoplastic mask was selected and the radiation dose was compared and analyzed. The experiment used Monte Carlo simulation. The shape in which the mask fixed the head was simulated for the ICRU sphere. The photon fluence was calculated at the skin Hp (0.07), the lens Hp (3), and the whole body Hp (10) by applying a thermoplastic plastic material and a filament material. As a result, when looking at the relative dose based on the thermoplastic plastic material, the difference was approximated within 4%. The material showing the most similar dose was PA-nylon. In selecting an appropriate filament material, it should be selected by comprehensively considering various conditions such as economical efficiency and radiation effects. It is thought that the results of this study can be used as basic data.

Development of a Korean Adult Female Voxel Phantom, VKH-Woman, Based on Serially Sectioned Color Slice Images (고해상도 연속절단면 컬러해부영상을 이용한 한국인 성인여성 복셀팬텀 VKH-Woman 개발)

  • Jeong, Jong Hwi;Yeom, Yoen Soo;Han, Min Cheol;Kim, Chan Hyeong;Ham, Bo Kyoung;Hwang, Sung Bae;Kim, Seong Hoon;Lee, Dong-Myung
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.199-208
    • /
    • 2012
  • The computational human phantom including major radiation sensitive organs at risk (OARs) can be used in the field of radiotherapy, such as the variation of secondary cancer risks caused by the radiation therapy and the effective dose evaluation in diagnostic radiology. The present study developed a Korean adult female voxel phantom, VKH-Woman, based on serially sectioned color slice images of Korean female cadaver. The height and weight of the developed female voxel phantom are 160 cm and 52.72 kg, respectively that are virtually close to those of reference Korean female (161 cm and 54 kg). The female phantom consists of a total of 39 organs, including 27 organs recommended in the ICRP 103 publication for the effective dose calculations. The female phantom composes of $261{\times}109{\times}825$ voxels (=23,470,425 voxels) and the voxel resolution is $1.976{\times}1.976{\times}2.0619mm^3$ in the x, y, and z directions. The VHK-Woman is provided as both ASCII and Binary data formats to be conveniently implemented in Monte Carlo codes.

Radiological Characterization of the High-sensitivity MOSFET Dosimeter (고감도 MOSFET 선량계 방사선학적 특성 연구)

  • Cho Sung Koo;Kim Chan-Hyeong
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.215-219
    • /
    • 2004
  • Due to their excellence for the high-energy therapy range of photon beams, researchers show increasing interest in applying MOSFET dosimeters to low- and medium-energy applications. In this energy range, however, MOSFET dosimeter is complicated by the fact that the interaction probability of photons shows significant dependence on the atomic number, Z, due to photoelectric effect. The objective of this study is to develop a very detailed 3-dimensional Monte Carlo simulation model of a MOSFET dosimeter for radiological characterizations and calibrations. The sensitive volume of the High-Sensitivity MOSFET dosimeter is very thin (1 ${\mu}{\textrm}{m}$) and the standard MCNP tallies do not accurately determine absorbed dose to the sensitive volume. Therefore, we need to score the energy deposition directly from electrons. The developed model was then used to study various radiological characteristics of the MOSFET dosimeter. the energy dependence was quantified for the energy range 15 keV to 6 MeV; finding maximum dependence of 6.6 at about 40 keV. A commercial computer code, Sabrina, was used to read the particle track information from an MCNP simulation and count the tracks of simulated electrons. The MOSFET dosimeter estimated the calibration factor by 1.16 when the dosimeter was at 15 cm depth in tissue phantom for 662 keV incident photons. Our results showed that the MOSFET dosimeter estimated by 1.11 for 1.25 MeV photons for the same condition.

  • PDF

Clinical Application of Dose Reconstruction Based on Full-Scope Monte Carlo Calculations: Composite Dose Reconstruction on a Deformed Phantom (몬테칼로 계산을 통한 흡수선량 재구성의 임상적 응용: 변형된 팬텀에서의 총제적 선량재구성)

  • Yeo, Inhwan;Xu, Qianyi;Chen, Yan;Jung, Jae Won;Kim, Jong Oh
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.139-142
    • /
    • 2014
  • The purpose of this study was to develop a system of clinical application of reconstructed dose that includes dose reconstruction, reconstructed dose registration between fractions of treatment, and dose-volume-histogram generation and to demonstrate the system on a deformable prostate phantom. To achieve this purpose, a deformable prostate phantom was embedded into a 20 cm-deep and 40 cm-wide water phantom. The phantom was CT scanned and the anatomical models of prostate, seminal vesicles, and rectum were contoured. A coplanar 4-field intensity modulated radiation therapy (IMRT) plan was used for this study. Organ deformation was simulated by inserting a "transrectal" balloon containing 20 ml of water. A new CT scan was obtained and the deformed structures were contoured. Dose responses in phantoms and electronic portal imaging device (EPID) were calculated by using the XVMC Monte Carlo code. The IMRT plan was delivered to the two phantoms and integrated EPID images were respectively acquired. Dose reconstruction was performed on these images using the calculated responses. The deformed phantom was registered to the original phantom using an in-house developed software based on the Demons algorithm. The transfer matrix for each voxel was obtained and used to correlate the two sets of the reconstructed dose to generate a cumulative reconstructed dose on the original phantom. Forwardly calculated planning dose in the original phantom was compared to the cumulative reconstructed dose from EPID in the original phantom. The prescribed 200 cGy isodose lines showed little difference with respect to the "prostate" and "seminal vesicles", but appreciable difference (3%) was observed at the dose level greater than 210 cGy. In the rectum, the reconstructed dose showed lower volume coverage by a few percent than the plan dose in the dose range of 150 to 200 cGy. Through this study, the system of clinical application of reconstructed dose was successfully developed and demonstrated. The organ deformation simulated in this study resulted in small but observable dose changes in the target and critical structure.