• Title/Summary/Keyword: 목질 바이오매스

Search Result 145, Processing Time 0.043 seconds

Value-added Utilization of Lignin Residue from Pretreatment Process of Lignocellulosic Biomass (목질계 바이오매스 전처리 공정에서 발생하는 리그닌 부산물 활용 기술 개발 동향)

  • Jung, Jae Yeong;Lee, Yumi;Lee, Eun Yeol
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.135-144
    • /
    • 2016
  • Due to the high price volatility and environmental concern of petroleum, biofuels such as bioethanol produced from lignocellulosic biomass have attracted much attention. It is also expected that the amount of lignin residue generated from pretreatment of lignocellulosic biomass will increase as the volume of cellulosic bioethanol increases. Lignin is a natural aromatic polymer and has very complex chemical structures with chemical functional groups. Chemical modification of lignin such as oxypropylation and epoxidation has also been applied to the production of value-added bioplastics such as polyurethane and polyester with enhanced thermal and mechanical properties. In addition, lignin can be used for carbon fiber production in automobile industries. This review highlights recent progresses in utilizations and chemical modifications of lignin for the production of bioplastics, resins, and carbon fiber.

Characteristics of the Gasification from Mixed Fuels of Charcoal and Undried Woodchip (미건조 우드칩과 숯 혼합에 따른 가스화 특성 분석)

  • Wang, Long;Kang, Ku;Lee, Tae Ho;Choi, Sun Hwa;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.81-88
    • /
    • 2015
  • 바이오매스는 유망한 신재생 에너지이다. 바이오매스는 액체 및 기체 연료로 전 환 할 수 있고, 다양한 공정을 통해 열 및 전력을 생산시키는데 사용된다. 바이오매스 가스화 공정은 바이오매스를 일산화탄소, 이산화탄소, 수소 및 메탄으로 이루어진 합성 가스로 전환시키는 기술이다. 바이오매스를 이용한 합성 가스 생산 및 활용은 세계적으로 늘어나는 에너지 필요성을 충족시킬 수 있는 대체에너지이다. 현재, 바이오매스 가스화의 주요 원료는 목질계 우드 칩을 주로 사용하고 있지만, 일반적으로 우드칩의 경우 수분을 다량 함유하고 있기 때문에 가스화 공정을 위해서는 별도의 건조처리를 필요로 한다. 우드칩의 건조에는 많은 에너지가 소요되고, 다량의 우드칩 건조에는 시간과 기상 및 공간적인 환경에 영향을 받는다. 본 연구에서는 미건조 우드칩의 가스화 공정을 위하여 미건조 우드칩에 숯을 각각 10, 30, 50 % 비율로 혼합하여 실험을 수행하였고, 실험결과 생산된 합성가스의 CO 농도 는 숯의 비율에 따라 14.9 ~ 25.6 % 증가되는 경향을 나타내었지만, 반대로 $CO_2$$CH_4$ 농도는 감소하였다. 이에 따라 합성가스 생산을 위한 미건조 우드칩과 숯의 최적혼합비율은 약 30 %로 판단되며, 발열량은 $1285.7kcal/Nm^3$, Gas yield는 $2.3Nm^3/kg$ 로 나타났다. 이에 적절한 숯의 혼합사용은 미건조 우드칩의 직접적인 가스화에 도움이 될 것으로 사료되며, 바이오매스 건조 공정에 필요한 에너지를 절약할 수 있을 것으로 판단된다.

Biomass Energy in the USA: A Literature Review (II) - Marketing and Policies for Green Power Production with Environmental Attributes - (미국 에너지 시장에 공급되는 바이오에너지에 관한 연구(II) - 환경친화적 녹색전기의 마케팅 및 정부지원책에 대하여 -)

  • Kim, Yeong-Suk;Gorman, Thomas
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.97-110
    • /
    • 2005
  • This paper is the second part of a literature review describing the current status of biomass energy use in the USA. The bioenergy technologies that convert biomass resources to a form of energy were presented, in particular focused on existing coal fired boiler, high efficiency gasification combined cycle. We presented latest biomass power energy supply, economic issues such as its production and plant investment cost in the Part I. In the Part II, our review summarized policy and market issues for electricity consumers, benefits from biomass power which could offer an alternative to conventional energy sources in the form of environmental, rural economic growth, and national energy security in the USA.

Recent advances on bio-alcohol production from syngas using microorganisms (미생물을 이용한 합성가스로부터 바이오 알코올 생산 최신 동향)

  • Woo, Ji Eun;Jang, Yu-Sin
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.4
    • /
    • pp.333-338
    • /
    • 2017
  • Cellulosic alcohol fermentation has recently gained more attention in the production of ethanol, butanol, and 2,3-butanediol. However, it was revealed that the process had several hurdles, such as, an expensive cost for biomass decomposition to yield fermentable sugars and a production of byproduct lignin. As an alternative for the process through biomass saccharification, the alcohol production through syngas from biomass has been studied. In this study, we reviewed acetogen and its central metabolic pathway, Wood-Ljungdahl route, capable of utilizing syngas. Furthermore, the metabolic engineering strategies of acetogen for bio-alcohol production from syngas was also reviewed with a brief perspective.

The Characteristics of Alkaline Pretreatment Methods of Cellulosic Biomass (섬유소계 바이오매스의 분별을 위한 다양한 알칼리 전처리 특성)

  • Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.303-307
    • /
    • 2013
  • This study compares the efficacy of soaking and percolation pretreatments with alkaline solutions for lignocellulosic biomass. Various biomass such as rice straw and barley were pretreated by soaking processes in various alkaline solutions including sodium hydroxide, potassium hydroxide, aqueous ammonia and sodium carbonate. The enzymatic digestibility of rice straw and barley that had been pretreated by soaking in aqueous ammonia was over 80%. Eucalyptus residue, Larix leptolepis and Pinus rigida exhibited relatively low enzymatic digestibility. Nevertheless, the enzymatic digestibility of pretreated eucalyptus residue was increased by five times compared to that of the initial biomass. And, the enzymatic digestibility of the percolation pretreated eucalyptus residue was increased 12 times.

Investigative Analysis of By-products from Lignocellulosic Biomass Combustion and Their Impact on Mortar Properties (목질계 바이오매스 연소부산물 분석과 모르타르 혼입 평가)

  • Jung, Young-Dong;Kim, Min-Soo;Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.663-671
    • /
    • 2023
  • This research experimentally evaluated the recyclability of four varieties of lignocellulosic fly ash(FA), a by-product from three power plants employing lignocellulosic biomass(Bio-SRF, wood pellets) as a fuel source. Comprehensive analyses were conducted on FA, encompassing both physical parameters (particle shape, size distribution, fineness, and density) and chemical properties(chemical composition and heavy metal content). Mortar test specimens, with FA mixing ratios ranging from 5 to 20%, were produced in compliance with KS L 5405 standards, and their flow and compressive strength were subsequently measured. The test results indicated that the four types of FA exhibited particle sizes approximately between 20~30㎛, densities around 2.3~2.5g/cm3, and a fineness range of 2,600~4,900cm2/g. The FA comprised approximately 50~90% of components such as SiO2, Al2O3, Fe2O3, and CaO, displaying characteristics akin to type-II and type-III FA of KS L 5405 standards, albeit with differences in chlorine and SiO2 content. From the mortar tests, it was observed that the compressive strength of the mortar ranged between 34~47MPa when the pellet combustion FA was mixed in proportions of 5~20%. FA, produced exclusively from the combustion of 100% lignocellulosic fuel, is assessed to possess high recyclability potential as a substitute for conventional admixtures.

Comparative Study of NIR-based Prediction Methods for Biomass Weight Loss Profiles

  • Cho, Hyun-Woo;Liu, J. Jay
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • Biomass has become a major feedstock for bioenergy and other bio-based products because of its renewability and environmental benefits. Various researches have been done in the prediction of crucial characteristics of biomass, including the active utilization of spectroscopy data. Near infrared (NIR) spectroscopy has been widely used because of its attractive features: it's non-destructive and cost-effective producing fast and reliable analysis results. This work developed the multivariate statistical scheme for predicting weight loss profiles based on the utilization of NIR spectra data measured for six lignocellulosic biomass types. Wavelet analysis was used as a compression tool to suppress irrelevant noise and to select features or wavelengths that better explain NIR data. The developed scheme was demonstrated using real NIR data sets, in which different prediction models were evaluated in terms of prediction performance. In addition, the benefits of using right pretreatment of NIR spectra were also given. In our case, it turned out that compression of high-dimensional NIR spectra by wavelet and then PLS modeling yielded more reliable prediction results without handling full set of noisy data. This work showed that the developed scheme can be easily applied for rapid analysis of biomass.

Enzymatic Hydrolysis Characteristics of Pretreated Rice Straw By Aqueous Ammonia for Bioethanol Production (바이오에탄올 생산을 위한 암모니아수에 의해 전처리된 볏짚의 효소당화 특성)

  • Park, Yong Cheol;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.470-474
    • /
    • 2011
  • Rice straw is the main grain straw and is produced in large quantities every year in Korea. Pretreatment of lignocellulosic biomass using soaking process was carried out mild conditions at atmospheric pressure and temperature of $60^{\circ}C$. We found enzymatic hydrolysis condition of pretreated biomass. In case of a rice straw, compared with previous lignocellulosic biomass, we found that hydrolysis time was a shorter than others. Hydrolysis of SAA-treated rice straw has shown conversion rate was higher at $50^{\circ}C$. Hydrolysis was ended between 40~48 hour. Glucose conversion rate was higher when enzyme loading is 65 FPU/ml and 32 CbU/ml. When substrate concentration was 5%(w/v), it was that conversion rate was 83.8% after hydrolysis for 72 hr. In simultaneous saccharification and fermentation(SSF) experiment about SAA-treated rice straw, ethanol productive yield was highest from $40^{\circ}C$. The yield of that time was 33.05% from 48 hour.