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요 약

바이오매스가 가진 재생 가능성과 환경적인 장점으로 인해 바이오매스는 바이오에너지와 다른 제품의 주요 원료가 되었다. 
바이오매스의 중요 성질을 예측하기 위해 분광학 데이터를 이용하는 연구를 포함한 많은 연구가 수행되었는데 근적외선 분

광학은 빠르고 신뢰성 있는 결과를 저비용으로 제공하는 비파괴 방법이기 때문에 널리 사용되었다. 이 연구에서는 서로 다

른 여섯가지의 목질계 바이오매스의 근적외선 스펙트럼 데이터를 기반으로 질량 손실 프로파일을 예측하는 다변량 통계기

법을 개발하였으며, 상관없는 잡음을 제거하고 근적외선 데이터를 잘 설명하는 파장대역을 선택하기 위해 웨이블릿 분석이 

사용되었다. 실제 근적외선 데이터를 가지고 개발된 방법을 예시하였는데 이 때 여러가지 예측모델이 예측 성능을 기준으

로 평가되었고 적절한 근적외선 스펙트럼 전처리법의 장점 또한 설명되었다. 웨이블릿으로 압축된 근적외선 스펙트럼을 이

용한 부분최소자승법 예측모델이 가장 좋은 성능을 보였으며 개발된 방법은 바이오매스의 빠른 분석에 쉽게 적용될 수 있

음 또한 증명되었다.

주제어 : 바이오연료, 바이오매스, 근적외선, 웨이블릿 분석, 부분최소자승법

Abstract : Biomass has become a major feedstock for bioenergy and other bio-based products because of its renewability and 
environmental benefits. Various researches have been done in the prediction of crucial characteristics of biomass, including the 
active utilization of spectroscopy data. Near infrared (NIR) spectroscopy has been widely used because of its attractive features: 
it’s non-destructive and cost-effective producing fast and reliable analysis results. This work developed the multivariate statistical 
scheme for predicting weight loss profiles based on the utilization of NIR spectra data measured for six lignocellulosic biomass 
types. Wavelet analysis was used as a compression tool to suppress irrelevant noise and to select features or wavelengths that be-
tter explain NIR data. The developed scheme was demonstrated using real NIR data sets, in which different prediction models were
evaluated in terms of prediction performance. In addition, the benefits of using right pretreatment of NIR spectra were also given. 
In our case, it turned out that compression of high-dimensional NIR spectra by wavelet and then PLS modeling yielded more re-
liable prediction results without handling full set of noisy data. This work showed that the developed scheme can be easily applied 
for rapid analysis of biomass.

Keywords : Biofuel, Biomass, Near Infrared (NIR), Wavelet analysis, Partial least squares

1. Introduction

There has been an increasing need for alternative energy re-
sources which are renewable and do not cause pollution. It is 
mainly due to the fact that greenhouse pollution caused by tra-
ditional fossil fuels aggravates the global warming and energy 
crisis. There are two major problems related to conventional fuels. 
That is, these energy sources are at the verge of getting extinct, 
and energy extraction causes serious pollution worldwide. Thus, 
such circumstances lead to the attention given to renewable clean 

energy sources such as solar, wind, biomass, etc. As one of re-
newable clean energy sources, a focus is placed on bio-fuels 
made from biomass, which is the fourth largest source of ener-
gy in the world (i.e., after coal, petroleum and natural gas). Bio-
mass is derived from growing plants including algae, trees and 
crops, in which solar energy is stored in chemical bonds. The 
amount of biomass that a plant produces depends on the amount 
of solar energy the plant receives and the amount it can store 
as carbohydrates[6].

Biomass can be used to meet a variety of energy needs such 
as generating electricityand fueling vehicles. When compared to 
other biomass including sucrose-containing feedstocks such as 
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sugar cane and fruits and starchy materials such as potatoes, corn, 
and wheat, lignocellulosic biomass has become a promising raw 
feedstock for bioenergy and other bio-based products because 
of its abundance, renewability, and other environmental benefits 
[2]. During the thermochemical conversion of lignocellulosic 
biomass into bioenergy, thermal decomposition behavior is cru-
cial to understanding the reaction mechanism and the charac-
teristics of the end-products.

Spectroscopic analysis techniques such as near infrared (NIR) 
recently provided a good alternative to off-line laboratory analy-
sisbecause of their increased reliability. In particular, NIR spec-
troscopy has been frequently used in many areas. It is mainly 
attributed to the fact that it is one of non-destructive and cost- 
effect analysis tools for identification of materials or prediction 
of certain characteristics of interest[7]. NIR data often consist 
of several hundred or thousand wavelengths or variables, in which 
different parts of the spectrum are correlated with each other. 
Basically, NIR radiation is guided into the sample, and some 
of the backscattered radiation is captured and matched with va-
riables. It provides useful information about the chemical com-
position of the sample. The capability of predicting certain qua-
lity characteristics or attributes of the samples by NIR has been 
evaluated extensively in many research areas[3,5]. Such calibra-
tion models have been built based on simple linear regression 
techniques.

Prediction model based on NIR spectra data may not perform 
well when there is the inherent collinearity and/or redundancy 
of NIR data. In PLS an orthogonal basis consisting of latent 
variables is built in such a way that they are oriented along di-
rections of maximal covariance between input data X and output 
data Y. Typically a relatively small number of latent variables 
is required compared to original predictor variables X. Applica-
tion of PLS is sometimes computationally expensive because it 
must deal with large datasets of NIR spectra[3]. Thus, when the 
dimension of the NIR spectra is very large, suitable compression 
methods should be adopted to improve the speed of related com-
putation. Considering the redundant nature of NIR data, it is 
necessary to eliminate irrelevant noise and to select important 
wavelengths for prediction.

As one of parsimonious representation of original spectra, wa-
velet compression of spectral data has emerged to mathematically 
process or handle spectral data. Some reports have shown that 
it provides good compression and de-noising of complicated sig-
nals or images with high dimensionality[1,4]. Wavelet analysis 
takes advantage of the local and multiscale properties of spectral 
data. Then there are good properties that wavelet functions are 
local in both time and frequency. Such advantages help to make 
the wavelet transform versatile and useful in industrial problem 
solving.

The objective of this work is to predict thethermal decompo-
sition behavior (i.e., weight loss profiles with temperatures) using 
NIR spectroscopy and multivariate analysis, which are rapid 
analysis tools for characterizing biomass raw feedstock. NIR 
spectra are usually quite redundant by nature and thus suitable 
compression tools need to be combined with other techniques. 
Another aspect that should be considered in dealing with NIR 
data is that we need reliable techniques to handle high-dimen-
sional correlated NIR data. The use of simple techniques may 
deteriorate the performance of NIR-based prediction modes. 
Furthermore, the inappropriate selection of NIR preprocessing 
or pretreatment methods can result in poor filtering of inherent 
noisy information of NIR data. Based on real NIR spectra data 
of six biomass types, multivariate statistical prediction models 
are built combined with wavelet analysis and pretreatment of 
spectra. Here, three prediction models were compared in terms 
of prediction errors between observed and predicted weight loss 
profiles.

This paper is organized as follows. First, a brief review of 
wavelet analysis is given in section 2, which is followed by the 
introduction of PLS and pretreatment methods. Section 3 presents 
the measurement data of biomass NIR spectra and details about 
prediction results. Using real NIR data obtained from three woody 
and three herbaceousbiomass samples, comparative studies are 
conducted to demonstrate the biomass prediction models. In sec-
tion 4, finally, concluding remarks are given.

2. Methods

2.1. Wavelet 

Wavelet transform decomposes original data or signals into its 
contributions at different regions of a time-scale space. Such a 
task is executed by projecting it on corresponding wavelet basis 
functions. Basically, wavelets are families of orthonormal basis 
functions that can be used to parsimoniously represent other func-
tions. A wavelet is a family of functions derived from a basis 
function ψ ( t) defined in terms of two parameters, a, dilation 
(scale), and b, translation (time):

ψa,b (t) = 2-a/2 ψ (2-at - b) (1)

The wavelet analysis takes advantage of the local and multi- 
scale properties of spectral signals, which is given by separating 
a signal into its individual frequency contributions. The wavelet 
is stretched or compressed to create other scales, changing the 
width of the windows. This property makes a wavelet suitable 
to describe different features of the signal. Wavelet coefficients 
at finer levels are used to capture sharp features and wavelet co-
efficients at coarser level to capture for broad or smooth features. 
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Performing this transformation on NIR spectra is to isolate the 
contributions of the signal from noise.

2.2. PLS and OSC
Partial least squares (PLS) performs a linear mapping of ori 

ginal data into latent variables. As one of multivariate projection 
methods, it seeks to find and model a relationship between inde-
pendent variables X and dependent variable(s) Y. It is necessary 
to find a set of latent variables that maximizes the covariance 
between X and Y. PLS decomposes X and Y into the form:

X = TPT + E (2)

Y = UQT + F (3)

where T and U are matrices of the extracted A score vectors, 
P and Q loading matrices, and E and F residual matrices. The 
PLS method searches for weight vectors w and c that maximize 
the sample covariance between t and u. By regressing X (Y) on 
t (u), a loading vector p (q) can be computed as follows:

P = (tTt)-1X T t (4)

Q = (uTu)-1Y T u (5)

Finally, the PLS regression model can be expressed as Y =
XB + G where B represents regression coefficients.

Orthogonal signal correction (OSC) is a PLS-based technique 
that removes from X the unwanted variation orthogonal to Y 
[9]. In this work, OSC is applied to the original NIR data so 
that the unnecessary variation of X that is orthogonal to Y is 
selectively removed. This is possible because OSC uses the res-
ponse Y to construct a kind of signal filter for X. The main 
purpose of OSC-based pre-processing is to improve the pre-
dictive power of the prediction model by removing unwanted 
variations of the NIR data that do not contribute to prediction. 
The optimum pre-treatment for a given spectra depends on the 
type of signal. There is no general rule for choosing the right 
preprocessing method. Pretreatments may be quite helpful but 
there is always a tradeoff between information loss and noise 
reduction.

2.3. Spectral pretreatment
As OSC places focus on the elimination of unnecessary in-

formation of data, the source of noise in NIR spectra may come 
from the sample or the instrumentation. Unwanted variations of 
NIR spectra should be removed because it is the chemical in-
formation that is of interest. Pretreatment or preprocessing of NIR 
spectra data is thus required before the analysis. Pretreatment 

or preprocessing of spectra data reduces noise and increases 
signal of interest. The use of pretreatment techniques to NIR 
spectra may improve the prediction performance of calibration 
models. Among those, mean centering of the spectra is to remove 
the absolute baseline. Scaling of the spectra, in addition, involves 
dividing each wavelength data by its standard deviation, which 
allows each wavelength to have the same importance during ca-
libration[5]. However, scaling is not recommended when most 
of the spectra do not contain useful information. It is because 
unfortunately variables with more noise than relevant informa-
tion will have the same importance as the ones with important 
signal.

Similar to OSC, multiplicative scatter correction (MSC) and 
standard normal variate (SNV) are two widely known pretreat-
ment methods that reduce spectral distortions due to scattering. 
SNV centers and scales each spectrum individually so that each 
has a mean equal to 0 and standard deviation equal to 1, which 
is given by 

pj
SD

xx
SNVx iij

ij ,,2,1,)( K=
−

= (6)

Here, xij is the ith spectrum measured at the jth wavelength 

and   is the mean value of the uncorrected ith spectrum. SD 

represents standard deviation of p values. In MSC, original spectra 
are first averaged and each individual spectrum is regressed to 
the total average. The regression slope and intercept represent 
the additive and multiplicative effects of light scattering, res-
pectively. Finally, each spectrum is corrected for offset (the offset 
value is subtracted) and each wavelength of the spectrum is di-
vided over the slope:

pj
b

ax
MSCx ij

ij ,,2,1,)( K=
−

= (7)

where a and b are the intercept and slope estimated by regre-
ssion.

3. Results and Discussion

3.1. NIR Data

NIR measurement data for various biomasses was obtained 
with an advanced spectral devices (ASD) field spectrometer 
(wavelength range from 350 nm to 2,500 nm, Boulder, USA). 
In order to collect the reflectance spectra, a fiber optic probe 
oriented at sixty degrees to the sample surface was used. Three 
scans for each of samples were collected from different location 
of samples. In this work we considered three woody biomass 
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Figure 1. Plots of NIR spectra data.

such as red oak, yellow poplar, and hickory along with three 
herbaceous biomass of switchgrass, corn stover, and bagasse. 
Three different samples were collected from each biomass. Here, 
wood samples were collected from different trees. A thermogra-
vity analyzer was used to investigate the weight loss (%) profile 
of different biomass over temperature. Specifically, samples were 
first heated from 50 ℃ to 105 ℃ with the rate of 25 ℃/min 
and kept at 105 ℃ during ten minutes to remove the moisture. 
Then they were heated to 750 ℃ within a nitrogen atmosphere. 
Three spectra collected on each of a total of 18 samples were 
used to predict the weight loss profile of different biomass. The 
reflectance spectra were converted to absorbance spectra. The 
data set was further reduced by averaging the 1 nm interval 
spectra to one with 4 nm intervals. NIR plots of the samples are 
shown in Figure 1. The NIR data were used to perform a sta-
tistical analysis.

3.2. Results
In this work, the prediction of a weight loss profile of biomass 

with temperatures was conducted based on multivariate statistical 
calibration models by analyzing the NIR spectra data. Before 
building a prediction model for the NIR data and weight loss 
profile with temperature, various preprocessing methods was 
applied to the original NIR data to choose optimal pretreatment 
scheme. Based on the 54 NIR samples three PLS models were 
built using the three pretreatment methods and compared. When 
implementing OSC, a direct orthogonal signal correction algori-
thm[8] was applied. The OSC-treated PLS model of 54 NIR 
samples was able to explain 92.1% of the Y variation. In addi-
tion, it showed a higher predictive power of 86.1% than 75.8% 

and 75.2 obtained from SNV and MSC, respectively. As a result, 
OSC was chosen in this work because the best performance was 
achieved from the NIR data. It is mainly because OSC-based 
preprocessing is able to remove unwanted variations of the NIR 
data that do not contribute to prediction.

The use of simple regression techniques makes it difficult to 
build reliable prediction models because of the high dimensio-
nality and collinearity of NIR data. Thus, we tried to adopt an 
effective compression tool of a wavelet transform. A leave- 
three-out procedure was performed on the 54 NIR spectrain order 
to evaluate the performance of the proposed prediction model 
using test data. Specifically, three of the 54 spectra are kept out 
of prediction model development, and these are then predicted 
by the prediction model. Then, this process is repeated until every 
sample had been kept out only once. Such a leave-three-out test 
procedure is used to evaluate the prediction model by using sam-
ples that are not included in the model-building stage. It may 
indicate how reliable the prediction model would be practically 
in predicting unknown samples.

A cross-validation procedure based on the predicted residual 
error sum of squares was used in this work in order to select 
the number of latent variables for PLS models. It is due to the 
fact that acritical parameter that determines the performance of 
PLS models is the number of latent variables retained. This num-
ber should be determined by considering both the curse of di-
mensionality and the loss of data information. In this work as 
a measure of the predictive performance of a prediction model 
we calculated root mean squared error in prediction (RMSEP) 
values of residuals, which is defined as 

n
yy

RMSEP
n

i ii∑ =
−

= 1
2)ˆ(

 (8)

where yi is the true value, iŷ  the predicted value, and n is the 
total number of samples. Methodological execution such as PLS 
and wavelet analysis was performed in an environment of MA-
TLAB (The MathWorks Inc., Natick, MA) and WaveLab v. 802, 
respectively. This is also the case for other techniques consi-
dered here.

The prediction results of RMSEP values corresponding to the 
ten temperature points are shown in Table 1. A total of three 
PLS prediction models were built and compared. They are based 
on ordinary PLS (“PLS”), wavelet-transformed PLS (“W-PLS”), 
and OSC- and wavelet-treated PLS (“OW-PLS”). For the wavelet- 
transformed models a Symmlet-8 wavelet was used in building 
the wavelet PLS prediction models. For different wavelet-trans-
formed PLS models and several cross-validation runs, about 
45~50 wavelet coefficientsare selected by a thresholding and 
used in further prediction modeling.
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Table 1. Performance comparison of RMSEP results at different temperatures

RMSEP
150 ℃ 200 ℃ 250 ℃ 300 ℃ 350 ℃ 400 ℃ 450 ℃ 500 ℃ 550 ℃ 600 ℃

PLS 0.149 0.728 1.281 3.701 6.687 4.325 4.052 3.570 3.863 4.269
W-PLS 0.121 0.676 1.203 2.976 5.801 2.073 1.895 2.503 2.935 3.709

OW-PLS 0.113 0.587 1.195 2.608 5.301 1.790 1.794 2.230 2.640 3.548

From Table 1, we are able to find that the wavelet PLS model 
with OSC-treated data (i.e., OW-PLS) showed the best prediction 
performance: it produced lower RMSEP values at the ten tem-
perature points. For example, OW-PLS prediction model predicted 
the weight loss at 150 ℃ with RMSEP = 0.113, whereas the PLS 
model with RMSEP value equal to 0.149. The advantage of using 
wavelet analysis in prediction model building can be found from 
this table. Compared to the PLS model, W-PLS and OW-PLS 
models produced lower prediction errors of RMSEP values at 
all the ten temperature points. At 350 ℃ RMSEP values of W- 
PLS and OW-PLS are 5.801 and 5.311, respectively. On the other 
hand, 6.687 are obtained from the PLS model. The effect of 
using OSC pretreatment can be seen by comparing the RMSEP 
values of W-PLS with OW-PLS. In fact, the use of OSC showed 
a better predictive performance than the models without it. It 
should be noted that there are some differences in predictive 
performance of calibration models between temperatures. In case 
of OW-PLS, prediction error of RMSEP at 350 ℃ (i.e., 5.311) 
has highest one while lowest RMSEP value occurs at 150 ℃. 
Such a case also can be found from other prediction models. 
That is, the response of the weight loss at 150 ℃ showed a mi-
nimum RMSEP value and a maximum RMSEP value for the 
weight loss at 350 ℃. It means that the weight loss at 150 ℃ 

can be predicted more reliably than those at 350 ℃. Such an 
observation can be seen from plots of observed vs. predicted 
response values.

Figure 2 and Figure 3 displayed observed vs. predicted values 
of weight loss at 150 ℃ and 350 ℃, respectively. In both figures 
the plot related to PLS (OW-PLS) is shown in top (bottom) panel. 
Compared to the two PLS plots, OW-PLS plots at two temperature 
points produced reliable prediction results. It is because that in 
such plots the data should fall on the diagonal when calibration 
models predict the data perfectly. As illustrated in Figure 2, for 
example, the OW-PLS model has a better predictive ability at 
150 ℃ than the PLS model. This is evident from comparing the 
three samples located at the bottom of the plots. For the three 
samples, the OW-PLS produced the predicted value relatively 
more close to the diagonal line than PLS did. Actually, the 
three predicted value of the PLS model is quite different from 
the observed one. Here, only three samples were mentioned 
for a comparison purpose, but it is the case for other points in 

(a)

(b)

Figure 2. Plots of observed vs. predicted weight loss (%) at 150 ℃ 

(a) using PLS and (b) using OW-PLS.

all the plots. To visualize the predictive performance of the 
prediction models, predicted weight loss profiles are plotted 
against those observed with temperatures, which is shown in 
Figure 4.

As expected from the comparison of RMSEP and observed vs. 
predicted plots, low RMSEP values resulted in little deviation 
between predicted and observed response variables. Overall, NIR 
spectroscopy combined with wavelet and statistical methods is 
a very useful tool to characterize biomass. It is due to the fact 
that NIR spectra of biomass include a lot of information in terms
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(a)

(b)

Figure 3. Plots of observed vs. predicted weight loss (%) at 350 ℃ 

(a) using PLS and (b) using OW-PLS.

of chemical composition and physical properties that affect th-
ermal decomposition behavior. Such good performance of the 
wavelet PLS-based prediction model can be explained by com-
paring original and reconstructed data. Though not shown here, 
only 48 wavelet coefficients out of a full set of 538 original 
variables or wavelengths were used for reconstruction. Recons- 
truction results were quite successful in that the reconstructed 
values approximated the original NIR data very well. It means 
that the remaining information is good enough to explain 
important patterns of the NIR data for the prediction of weight 
loss profiles. In this case, 91.07% of the original information 
was considered as unnecessary or irrelevant parts.

4. Concluding Remarks

In this work, the empirical models for predicting a weight

(a)

(b)
Figure 4. Profiles of weight loss (%) vs. temperature for a sample of 

bagasse based on (a) PLS and (b) OW-PLS (dotted line: 
observed values, crossed line: predicted values).

loss profile of different biomass types were developed. By using 
the NIR spectra data multivariate statistical prediction models 
were built combined with wavelet analysis and pretreatment of 
OSC. Prior to building prediction models for the weight loss 
profiles with temperature, various preprocessing methods were 
tested to choose optimal pretreatment scheme. The three predic-
tion models were compared, and as a result, the wavelet PLS 
models with OSC pretreatment of NIR spectra showed the best 
prediction performance in that it produced the lowest prediction 
errors. This shows the possibility and benefits of using NIR spec-
tra combined with powerful techniques to predict thermal de-
composition behavior of various biomass samples. It may be due 
to the fact that NIR spectra are quite redundant by nature and 
thus suitable for compression. Another thing is that PLS is a 
powerful technique for modeling collinear and high-dimensional 
NIR data. As shown in Figure 4, there is little difference in pre-
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diction performance between PLS and OW-PLS. From a practical 
point of view, PLS can be one of options used for modeling NIR 
data because it has simple modeling procedure and comparable 
prediction performance. Nonetheless, more accurate prediction 
models should be attacked in near future using various NIR sam-
ples (more samples including six woody and herbaceous biomass 
types) and more advanced modeling techniques in order to im-
prove the prediction performance for biomass.
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