• Title/Summary/Keyword: 목질??

Search Result 573, Processing Time 0.025 seconds

Shear Strength Property of Wood Treated by Steam Treatment at High Temperature (고온수증기처리 목재의 전단강도 특성)

  • Kim, Jung-Hwan;Lee, Weon-Hee;Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.9-15
    • /
    • 2001
  • This study deals with shear strength test for Pinus densiflora and Pinus radiata treated at above $100^{\circ}C$ by heat steam. Treatment conditions of this experiment were operated at regular intervals of $20^{\circ}C$ at temperatures up to $200^{\circ}C$ for 5, 10, 20 and 30 minutes by using the steam-explosion apparatus. It was examined, at high temperatures, degradation of some compounds from wood composition could lead to reduced the shear strength through heat steaming processes and play a large part in the plastic process of solid wood materials. It could be estimated that the shear strength of woods were gradually reduced by heat steaming time. Remarkable reduction of shear strength of woods was observed with increasing steaming temperatures above 10 minutes steaming time. Furthermore, this phenomenon shows a tendency to increase with higher temperatures. Therefore, it was considered that the softening by steaming treatment at high temperatures is necessary for the improvement on the wood processing ability.

  • PDF

Evaluation on Relations between the Oxalic Acid Producing Enzyme, Oxaloacetase from Tyromyces palustris, and Wood Decaying Activity (Tyromyces palustris의 수산생성효소인 Oxaloacetase와 목질 분해와의 관계 구명)

  • Son, Dong-Weon;Lee, Dong-Heub;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.48-53
    • /
    • 1996
  • Brown rot fungus, Tyromyces palustris, has been reported to cause the loss of strength accelerated by oxalate, a non-enzymatic low molecular weight acid, with minute weight loss of decaying wood in early stage. The production of oxalate in relation to wood decaying and the presence of oxaloacetase. an oxalate producing enzyme, were identified during the process. Tyromyces palustris produced the largest amount of oxalate among brown rot fungi. In order to find out the cleavage of pulp fiber, we submerged pulp fiber in oxalate solution and the results showed that the number of short pulp fiber was highly increased, compared with control solution. The pH of decaying wood was decreased to 1.77 which was close to that of saturated oxalate solution, pH 1.2, Thus, the oxalate was thought to be accumulated in the decaying wood, The oxaloacetase which accelerates production of oxalate was derived from fungus, and the production of oxalate by the enzyme was determined by using on UV/Vis spectrophotometer. Therefore, the oxalate was found to be produced by oxaloacetase during decay. The oxalate may cause the acid-hydrolysis of cellulose and hemicellulose. The oxalate was thought to reduce the degree of polymerization and increase the enzyme activity, which resulted in rapid loss of strength in early stage-an identical feature of brown rot fungus.

  • PDF

Physical and Mechanical Properties of Composite Panel Manufactured from Wood Particle and Recycled Polyethylene (목재 파티클과 재생폴리에틸렌을 이용한 목질복합패널의 물리·기계적 성질)

  • Han, Tae-Hyung;Kwon, Jin-Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.340-348
    • /
    • 2009
  • The recycled polyethylene was used for making wood-plastic composite panels. In this experiment, the sizes of wood particles used were 1/32", 1/4" and 1/2" in mesh number, and the contents of the recycled polyethylene were 10%, 30% and 50%. The physical and mechanical properties of the composite panels were investigated. At a given content of recycled polyethylene, the density of composite panel decreases with the increase of wood particle size. The thickness swelling and water adsorption decrease with the increase of recycled polyethylene, where significantly lower at 10%, compared with at 30%. In the water soaking experiment for 14 days, the dimensional stability of composite panel appeared good in the composite panel with recycled polyethylene content of 30% or higher. As the content of recycled polyethylene increases, the internal bonding strength and the modulus of rupture in bending strength increases. In SEM, the molten recycled polyethylene showed interlocking action through its penetration into tracheid openings including pits as well as binder between wood particles as the matrix material, thus increasing bonding strength and improving the physical and mechanical properties of composite panel.

Isolation of Mutant Yeast Strains having Resistance to 1-ethyl-3-methylimidazolium Acetate through a Directed Evolutionary Approach (유도적 돌연변이 유발 방법을 통한 1-ethyl-3-methylimidazolium acetate에 대해 내성을 갖는 돌연변이 효모 선별)

  • Lee, Yoo-Jin;Kwon, Deok-Ho;Park, Jae-Bum;Ha, Suk-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.51-56
    • /
    • 2017
  • Cellulosic biomass is a renewable source for biofuel production from non-edible biomass. An optimized pretreatment process is required for the efficient utilization of cellulosic biomass. Among various pretreatment processes, the use of ionic liquids has been reported recently. However, the residual ionic liquid after pretreatment acts as an inhibitor of microbial fermentation. Recently, we isolated mutant Saccharomyces cerevisiae strains resistant to the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM][Ac]) by using a directed evolutionary approach. When 3% [EMIM][Ac] was added to a medium containing 80 g/l of glucose, mutants D452-B2 and D452-S3 produced 35.6 g/l and 36.3 g/l of ethanol, respectively, for 18 h while the parental strain (S. cerevisiae D452-2) produced 1.3 g/l of ethanol. Thus, these mutant S. cerevisiae strains might prove advantageous when ionic liquids are used for biofuel production from cellulosic biomass.

High-pressure Compaction of Sawdust of Hyunsasi-poplar (Populus alba ${\times}$ P. glandulosa) for Densified Fuel (고밀화에 의한 현사시 톱밥의 고형연료화)

  • 한규성;여진기
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.2
    • /
    • pp.54-59
    • /
    • 2003
  • Recently, densified pellet fuel from wood biomass is widely used at North America and Europe as a regenerable and clean carbon neutral bioenergy. High-pressure compaction of sawdust of Hyunsasi-poplar (Populus alba ${\times}$ P. glandulosa) to form a densified fuel was studied. Calorific and elemental analysis were carried out to assess Hyunsasi-poplar clones as fuels. Hot-press process was adopted for compaction of sawdust and compaction was performed under temperature from 100 to 180$^{\circ}C$, at pressure of 250 to 1000 kgf/$\textrm{cm}^2$, and for 2.5 to 10 minutes. Densified fuels were evaluated by its oven-dry density and fines after 5-minute shaking test. The target density and fines of densified fuels were over 1.2 g/$\textrm{cm}^2$ and below 0.5%, respectively. When the press-temperature is over 160$^{\circ}C$, densified fuels with density eve. 1.2 g/$\textrm{cm}^2$ and with fines below 0.5% can be produced. And the pressure over 750 kgf/$\textrm{cm}^2$ was effective for this production. It was found that the optimum press condition for preparation of densified fuel was 180$^{\circ}C$ -1000 kgf/$\textrm{cm}^2$ minutes.

  • PDF

Pretreatment of Helianthus tuberosus Residue by Two-Stage Flow Through Process (2단 흐름형 침출공정에 의한 돼지감자 줄기의 전처리)

  • Park, Yong Cheol;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.417-424
    • /
    • 2015
  • In this study, the pretreatment of Helianthus tuberosus residue had been performed. The two-stage pretreatment on flow-through process were applied in the interests of increase of sugar production yield on enzymatic saccharification. The delignification by aqueous ammonia and the fractionation of hemicellulose by sulfuric acid solution as pretreatment solution were confirmed for effects of enzymatic saccharification. Two-stage pretreatment process was performed using aqueous ammonia and sulfuric acid. The first step was performed with aqueous ammonia for 40 min at $163.2^{\circ}C$ and the second step was performed with sulfuric acid solution for 20 min at $169.7^{\circ}C$. And then, the first step was performed with sulfuric acid solution and the second step was pretreated with aqueous ammonia. At this time, the glucose production was 30.7 g and the glucose yield was 72.4% in the first step process with aqueous ammonia. And, the glucose production was 20.9 g and the glucose yield was 49.3% in the first step process with sulfuric acid solution.

Separation of Acetic Acid from Simulated Biomass Hydrolysates Containing Furans by Emulsion Liquid Membranes with an Organophosphorous Extractant (유기인산계 추출제를 이용한 에멀젼형 액막법에 의해 푸란유도체를 함유하는 모사 바이오매스 가수분해액으로부터 초산의 분리)

  • Lee, Sang Cheol
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.687-693
    • /
    • 2018
  • The selective removal and recovery of fermentation inhibitors during purification of sugars from biomass hydrolysates can increase the economic efficiency of the entire process to produce bioalcohol from lignocellulosic biomass. This study investigated the effect of furans in phenols-free biomass hydrolysate on acetic acid extraction in an emulsion liquid membrane system. Under specific operating conditions, more than 99% of acetic acid could be extracted within 5 minutes, and the degrees of extraction of furfural and 5-hydroxymethylfurfural were about 10% and 4%, respectively. The extraction rate of acetic acid was also lower at a higher initial concentration of furfural in the feed phase, which was greater for furfural than 5-hydroxymethylfurfural. Thus, if furfural is first removed from the hydrolysate prior to acetic acid extraction, emulsion liquid membrane would be a more economically efficient way of removing acetic acid.

Comparative Study of NIR-based Prediction Methods for Biomass Weight Loss Profiles

  • Cho, Hyun-Woo;Liu, J. Jay
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • Biomass has become a major feedstock for bioenergy and other bio-based products because of its renewability and environmental benefits. Various researches have been done in the prediction of crucial characteristics of biomass, including the active utilization of spectroscopy data. Near infrared (NIR) spectroscopy has been widely used because of its attractive features: it's non-destructive and cost-effective producing fast and reliable analysis results. This work developed the multivariate statistical scheme for predicting weight loss profiles based on the utilization of NIR spectra data measured for six lignocellulosic biomass types. Wavelet analysis was used as a compression tool to suppress irrelevant noise and to select features or wavelengths that better explain NIR data. The developed scheme was demonstrated using real NIR data sets, in which different prediction models were evaluated in terms of prediction performance. In addition, the benefits of using right pretreatment of NIR spectra were also given. In our case, it turned out that compression of high-dimensional NIR spectra by wavelet and then PLS modeling yielded more reliable prediction results without handling full set of noisy data. This work showed that the developed scheme can be easily applied for rapid analysis of biomass.

Cryopreservation of winter vegetation buds of Betula platyphylla var. japonica in liquid nitrogen (자작나무 동아의 액체질소 내 초저온 보존)

  • 안영희
    • Korean Journal of Plant Resources
    • /
    • v.15 no.2
    • /
    • pp.89-95
    • /
    • 2002
  • In woody plant germplasms, using prefrozen dormant buds for materials is one way to achieve successful cryopreservation. The protocol of cryopreservation for White birch (Betula platyphylla var. japonica) winter vegetative buds is the following. First, the branches of White birch were collected in January 20, when the vegetative buds were still in a state of quiescence. The winter buds with about 5㎜ of xylem tissue were removed from the branches. They were dehydrated to moisture contents about 44% by air dry treatment. The buds were prefrozen, with the temperature being decreased by 5∼-20$\^{C}$ and then transfered to the LN(liquid nitrogen) maintained below -l96$\^{C}$. After cryopreservation, the vegetative buds were rapidly thawed in a water bath at 40$\pm$5$\^{C}$. In this case, the cell survival rate of samples was about 86%. After sterilization, buds were then cultured on MS medium. These results demonstrate the feasibility for cryopreservation of winter vegetation buds of Betula platyphylla var. japonica.

Anatomical Characteristics of Kenaf Cultivated in Korea (국내에서 생장한 Kenaf의 해부학적 특성)

  • Kwon, Young-Man;Hwang, Won-Joong;Kwon, Sung-Min;Jo, Jun-Hyung;Lee, Myoung-Ku;Kim, Nam-Hun
    • Journal of Forest and Environmental Science
    • /
    • v.21 no.1
    • /
    • pp.98-103
    • /
    • 2005
  • Anatomical properties of kenaf cultivated in Korea was investigated using light microscopy. Bast fiber, phloem ray and cortex parenchyma cell were observed in bast, and vessel, wood fiber and ray in core. A lot of solitary and multiple radial pores in core existed. The cell type of ray parenchyma in radial section was procumbent, upright and square cells. Uniseriate and multiseriate rays existed in tangential section. The layer of bast fiber in bast increased with increasing the growth period.

  • PDF