• Title/Summary/Keyword: 모 웨이블릿

Search Result 68, Processing Time 0.032 seconds

Selection of a Mother Wavelet Using Wavelet Analysis of Time Series Data (시계열 자료의 웨이블릿 분석을 위한 모 웨이블릿의 선정문제)

  • Lee, Hyunwook;Song, Sunguk;Zhu, Ju Hua;Lee, Munseok;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.259-259
    • /
    • 2019
  • 시계열 자료들을 분석하고자 하는 경우 자료가 정상성(stationarity)을 만족하는 경우는 드물다. 특히 계절성을 제거한 자료들에서는 정량화하기 어려운 주기성이 많이 관찰된다. 즉, 어떤 특정지역에서 나타나는 현상이 다른 기상 현상에 영향을 미칠 것은 자명한 일이나 그 관련성이 선형(linearity)일 가능성은 극히 드물다. 따라서 그들 사이의 관련성이 선형성에 근거한 지표들로 정량화되어야 한다. 이러한 문제점을 해결하기 위해서 다양한 방법이 사용되며 그중에서 웨이블릿 분석을 통해 본 연구를 진행하였다. 웨이블릿 변환(wavelet transforms)은 특수한 함수의 집합으로 구성되어 기존 웨이블릿 신호의 분석을 위해 사용되는 방법이다. 이 변환은 푸리에 변환에서 변형된 방법으로 특정한 기저 함수(base function)를 이용하여 기존의 시계열 자료를 주파수로 바꾸는 변환이다. 웨이블릿 변환에서 기저 함수를 모 웨이블릿이라고 하며 이를 천이, 확대 및 축소 과정을 통해 주파수를 구성한다. 웨이블릿 분석은 모 웨이블릿을 분해하고 재결합하여 시계열 분석을 할 수 있다. 모 웨이블릿 함수에는 Haar, Daubechies, Coiflets, Symlets, Morlet, Mexican Hat, Meyer 등의 여러 가지 종류의 모 웨이블릿 함수가 있으며 모 웨이블릿이 달라지면 결과가 다르게 나타난다. 기존에는 Morlet 웨이블릿을 주로 이용하여 주파수분석에 사용하여 결과를 도출하였다. 그리고 시계열 자료는 크게 백색잡음(White Noise), 장기기억(Long Term Memory), 단기기억(Short Term Memory)으로 나뉜다. 각 시계열 자료의 종류에 따라 임의의 시계열 자료를 산정하여 그에 따른 웨이블릿 분석을 통해 모 웨이블릿의 특성을 도출하였다. 본 연구에서는 웨이블릿 분석을 통해 시계열 자료의 최적 모 웨이블릿을 결정하고자 남방진동지수(SOI), 북극진동지수(AOI)의 자료를 이용하여 웨이블릿 분석을 시도하였다. 웨이블릿 분석은 모 웨이블릿에 따라 달라지는 결과를 토대로 분석하였으며 이를 정상성과 지속성에 따라 분류된 시계열에 적용하여 최적 모 웨이블릿을 결정하고자 하였다. 본 연구에서는 임의의 시계열 자료에서 설정한 최적의 모 웨이블릿을 AOI와 SOI와 같은 실제 시계열 자료에 대입하여 분석을 진행하였다. 본 연구에서는 시계열 자료의 종류를 구분하고 자료의 특성에 따라 가장 적합한 모 웨이블릿을 구하고자 하였다.

  • PDF

Selecting a mother wavelet for univariate wavelet analysis of time series data (시계열 자료의 단변량 웨이블릿 분석을 위한 모 웨이블릿의 선정)

  • Lee, Hyunwook;Lee, Jinwook;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.8
    • /
    • pp.575-587
    • /
    • 2019
  • This study evaluated the effect of a mother wavelet in the wavelet analysis of various times series made by combining white noise and/or sine function. The result derived is also applied to short-memory arctic oscillation index (AOI) and long-memory southern oscillation index (SOI). This study, different from previous studies evaluating one or two mother wavelets, considers a total of four generally-used mother wavelets, Bump, Morlet, Paul, and Mexican Hat. Summarizing the results is as follows. First, the Bump mother wavelet is found to have some limitations to represent the unstationary behavior of the periodic components. Its application results are more or less the same as the spectrum analysis. On the other hand, the Morlet and Paul mother wavelets are found to represent the non-stationary behavior of the periodic components. Finally, the Mexican Hat mother wavelet is found to be too complicated to interpret. Additionally, it is also found that the application result of Paul mother wavelet can be inconsistent for some specific time series. As a result, the Morlet mother wavelet seems to be the most stable one for general applications, which is also assured by the recent trend that the Morlet mother wavelet is most frequently used in the wavelet analysis research.

Selection of mother wavelet for bivariate wavelet analysis (이변량 웨이블릿 분석을 위한 모 웨이블릿 선정)

  • Lee, Jinwook;Lee, Hyunwook;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.905-916
    • /
    • 2019
  • This study explores the effect of mother wavelet in the bivariate wavelet analysis. A total of four mother wavelets (Bump, Mexican hat, Morlet, and Paul) which are frequently used in the related studies is selected. These mother wavelets are applied to several bivariate time series like white noise and sine curves with different periods, whose results are then compared and evaluated. Additionally, two real time series such as the arctic oscillation index (AOI) and the southern oscillation index (SOI) are analyzed to check if the results in the analysis of generated time series are consistent with those in the analysis of real time series. The results are summarized as follows. First, the Bump and Morlet mother wavelets are found to provide well-matched results with the theoretical predictions. On the other hand, the Mexican hat and Paul mother wavelets show rather short-periodic and long-periodic fluctuations, respectively. Second, the Mexican hat and Paul mother wavelets show rather high scale intervention, but rather small in the application of the Bump and Morlet mother wavelets. The so-called co-movement can be well detected in the application of Morlet and Paul mother wavelets. Especially, the Morlet mother wavelet clearly shows this characteristic. Based on these findings, it can be concluded that the Morlet mother wavelet can be a soft option in the bivariate wavelet analysis. Finally, the bivariate wavelet analysis of AOI and SOI data shows that their periodic components of about 2-4 years co-move regularly every about 20 years.

Optimizing Wavelet in Noise Canceler by Deep Learning Based on DWT (DWT 기반 딥러닝 잡음소거기에서 웨이블릿 최적화)

  • Won-Seog Jeong;Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.113-118
    • /
    • 2024
  • In this paper, we propose an optimal wavelet in a system for canceling background noise of acoustic signals. This system performed Discrete Wavelet Transform(DWT) instead of the existing Short Time Fourier Transform(STFT) and then improved noise cancellation performance through a deep learning process. DWT functions as a multi-resolution band-pass filter and obtains transformation parameters by time-shifting the parent wavelet at each level and using several wavelets whose sizes are scaled. Here, the noise cancellation performance of several wavelets was tested to select the most suitable mother wavelet for analyzing the speech. In this study, to verify the performance of the noise cancellation system for various wavelets, a simulation program using Tensorflow and Keras libraries was created and simulation experiments were performed for the four most commonly used wavelets. As a result of the experiment, the case of using Haar or Daubechies wavelets showed the best noise cancellation performance, and the mean square error(MSE) was significantly improved compared to the case of using other wavelets.

Design of Wavelet Neural Network Based Predictive Control System for the Path Tracking of Mobile Robots (이동 로봇의 경로 추종을 위한 웨이블릿 신경 회로망 기반 예측 구어 시스템의 설계)

  • Song, Yong-Tae;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2329-2331
    • /
    • 2004
  • 본 논문에서는 이동 로봇의 경로 추종 제어를 위해 웨이블릿 신경 회로망에 기반한 예측 제어기의 설계 방법을 제안하고자 한다. 제안한 방법에 의해 설계된 제어기는 이동 로봇의 동특성을 예측하기 위한 웨이블릿 신경회로망 기반 예측기와 예측 제어기로 구성된다. 제안한 방법에서 모델링 및 제어기로 적용되는 신경 회로망의 장점과 우수한 해석 능력을 가진 웨이블릿 변환의 장점을 결합한 웨이블릿 신경 회로망을 이용하여 이동 로븟의 동특성을 모델링하여 예측 제어기에서의 비용 함수 최소화에 적용한다. 경로 추종 제어의 목적인 이동 로봇의 실제 출력과 예측기의 출력 오차를 최소화하기 위해 웨이블릿 신경 회로망의 파라미터 동정 및 예측 제어기는 경사 하강법을 이용하여 학습한다. 마지막으로 컴퓨터 모의 실험을 통하여 제안한 예측 제어 시스템의 적용가능성 및 효율성을 검증하고자 한다.

  • PDF

Noise Reduction of Digital Image Using Wavelet Coefficient (웨이블릿 계수를 이용한 디지털영상에서의 잡음제거)

  • 남현주;최승권;신승수;조용환
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.05a
    • /
    • pp.376-382
    • /
    • 2003
  • Recently, there have been many types of wavelet transformations proposed to remove the noise from an signal and image data By using feature of seperating the noise from the original image the Wavelet transformations can retain the edges of the images The wavelet analysis is complete when the basis function is coded into the wavelet This Thesis describes a method of using wavelet transformation to remove the noise from an image signal. Although the wavelet transformation proposed by Donoho and Johnstone works, it does not reliably remove all the noise from the images. So this thesis propose an algorithm that selected Wavelet Shrinkgae and threshold according to the features of bands and amplitude of noise.

  • PDF

A Study of Image Coding Technique Using Adaptive Wavelet Transform (적응적 웨이블릿 변환을 사용한 영상 코딩 기법에 관한 연구)

  • 김혜경;이옥경;오해석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.386-388
    • /
    • 1999
  • 본 논문은 이미지 데이터의 효율적인 코딩에 대한 새로운 방법을 나타낸다. 웨이블릿 변환을 기초로 한, 알고리즘은 서브밴드 간의 남아 있는 상관관계를 이용한다. 웨이블릿 계수들에 대한 성공적인 대략값은 계층적인 심볼 스트림을 초래하고, 그것은 PSD(의미있는 자손에 대한 예언)과 함께 매우 높게 압축된다. 코딩 알고리즘은 이미지 컨텐트에 대한 높은 적응성에 의해 그 자체를 구별한다. 초래하는 비트스트림은 그것들의 중요도에 대한 순서에 있어서 모든 이미지 정보를 구성한다. 그러므로 그것은 위험한 디코딩 과정 없이 어떤 지점에서 절단하는 것이 가능하다. 이러한 내장된 비트스트림의 이점은 공간적인 규모성(scalability)과 왜곡율이다. 좀 더 나은 향상은 웨이블릿 패킷으로 알려진 새로운 적응적인 웨이블릿 변환을 사용하여 획득된다. 초기의 기법들과 적합하지 않은 현재의 서브밴드에 대한 관련성있는 통계적인 특성들(특히 상관관계)은 처음으로 분석된다. 그것들에 의존하는, 서브밴드가 분해 유무에 관계없이 분해 결정이 만들어진다. 이러한 결과는 최고의 기본적인 선택이 아니고 최적에 가까운 분해 구조를 초래한다. 본 논문에서 제안한 모델의 가장 주요한 이점은 계산적인 비용의 축소이다.

  • PDF

A Study on the Eccentricity Compensation of Optical Disk Using a Wavelet Neural Network (웨이블릿 신경 회로망을 이용한 광디스크 드라이브의 편심 보상에 관한 연구)

  • Joo, Byung-Jae;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2613-2615
    • /
    • 2004
  • 본 논문에서는 광학 디스크 기기의 주기적인 외란인 편심 보상을 위해 웨이블릿 신경 회로망 기반 외란 모델로 구성된 순방향 오차 제거(feedforward error rejection) 방법을 제안한다. 신호 모델링 방법으로 사용되어진 신경 회로망 모델의 단점인 실시간 처리 능력 및 국부 최소치로의 가능성 등을 극복하며 주파수와 시간 영역에서의 우수한 신호 해석 능력을 가진 웨이블릿 변환의 장점을 가진 웨이블릿 신경 회로망을 이용하여 디스크의 외란을 모델링 한다. 웨이블릿 신경회로망은 경사 강하법 (gradient descent method)을 이용하여 학습하며, 본 논문에서 제안한 방법의 효율성을 검증하기 위해 실제 광학 디스크 기기의 외란 데이터를 이용한 컴퓨터 모의 실험을 수행한다.

  • PDF

히스토그램 평활화 및 라플라시안 필터링을 이용한 태양 코로나 영상처리기법 연구

  • Kim, Tae-Hyeon;Mun, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.31.1-31.1
    • /
    • 2010
  • 본 연구에서는 IDL(Interactive Data Language)의 여러가지 영상처리기법을 SOHO EIT 영상에 적용하여 세부적인 코로나 구조를 파악하고자 한다. 이를 위하여 우리는 히스토그램 평활화(Equalization), 2차 미분을 이용한 경계선 추출 방법인 라플라시안 필터링, 공간 주파수 영역의 웨이블릿 변환 등의 영상 처리 기법을 사용하였다. 히스토그램 평활화는 1차 처리과정으로 모든 영상에 동일하게 사용되었고, 나머지 방법은 2차 처리과정으로 사용하였다. 처리 결과 웨이블릿 변환 보다는 라플라시안 필터링 영상처리 방법이 더 구체적인 구조를 보여주는 것을 알 수 있었다. 다만 웨이블릿 변환의 경우 IDL에 내장된 노이즈 제거용 웨이블릿 변환 함수를 사용한 것으로, 다른 다양한 방법의 적용이 필요한 것으로 판단된다. 본 연구를 통해 얻은 영상처리 기법이 태양 코로나 구조 연구에 유용하게 사용될 수 있기를 기대한다.

  • PDF

Efficient Motion Estimation Using Half-pel Accuracy Motion Vector by Selective Interpolation in the Wavelet Domain (웨이블릿 영역에서 선택적 보간의 반화소를 이용한 효과적인 움직임 추정)

  • 이태호;김광용;정태연;김덕규
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.179-182
    • /
    • 2000
  • 논문은 웨이블릿(wavelet) 변환된 각 프레임의 모든 부대역의 블록들에 대해 계층적 움직임을 추정할때 고해상도 계층에서는 기저대역에서 추정된 전역 움직임 벡터를 기초로 하여 국부 움직임을 추정한다. 이때 복원 영상에 미치는 영향이 가장 큰 기저대역에 대하여 반화소를 사용하면 더욱 최적의 움직임 벡터를 추정할 수 있으나 계산량이 증가하는 단점이 있다. 블록내에 인접한 화소들 간에는 상관관계가 높다는 사실을 이용하여 오차가 최소가 되는 방향을 예측하여 선별적인 보간을 행하여 반화소 움직임을 탐색하여 계산량을 줄였다. 그리고 더욱 향상된 화질을 얻기 위해서 에지 성분이 많은 고해상도 계층에서 저해상도 계층으로의 선택적 국부 움직임을 추정하였다. 모의 실험 결과 기존의 웨이블릿 변환을 이용한 움직임 추정 및 보상 방법보다 향상된 화질을 나타내었다.

  • PDF