DOI QR코드

DOI QR Code

Selection of mother wavelet for bivariate wavelet analysis

이변량 웨이블릿 분석을 위한 모 웨이블릿 선정

  • Lee, Jinwook (Department of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Lee, Hyunwook (Department of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Yoo, Chulsang (Department of Civil, Environmental and Architectural Engineering, Korea University)
  • 이진욱 (고려대학교 건축사회환경공학과) ;
  • 이현욱 (고려대학교 건축사회환경공학과) ;
  • 유철상 (고려대학교 건축사회환경공학과)
  • Received : 2019.09.17
  • Accepted : 2019.10.09
  • Published : 2019.11.30

Abstract

This study explores the effect of mother wavelet in the bivariate wavelet analysis. A total of four mother wavelets (Bump, Mexican hat, Morlet, and Paul) which are frequently used in the related studies is selected. These mother wavelets are applied to several bivariate time series like white noise and sine curves with different periods, whose results are then compared and evaluated. Additionally, two real time series such as the arctic oscillation index (AOI) and the southern oscillation index (SOI) are analyzed to check if the results in the analysis of generated time series are consistent with those in the analysis of real time series. The results are summarized as follows. First, the Bump and Morlet mother wavelets are found to provide well-matched results with the theoretical predictions. On the other hand, the Mexican hat and Paul mother wavelets show rather short-periodic and long-periodic fluctuations, respectively. Second, the Mexican hat and Paul mother wavelets show rather high scale intervention, but rather small in the application of the Bump and Morlet mother wavelets. The so-called co-movement can be well detected in the application of Morlet and Paul mother wavelets. Especially, the Morlet mother wavelet clearly shows this characteristic. Based on these findings, it can be concluded that the Morlet mother wavelet can be a soft option in the bivariate wavelet analysis. Finally, the bivariate wavelet analysis of AOI and SOI data shows that their periodic components of about 2-4 years co-move regularly every about 20 years.

본 연구에서는 이변량 웨이블릿 분석에 있어 모 웨이블릿이 어떤 영향을 미치는지를 파악하였다. 모 웨이블릿으로는 관련 연구에서 많이 사용되고 있는 총 네 가지(Bump, Mexican hat, Morlet, Paul)를 선정하였다. 이들 모 웨이블릿은 먼저 백색잡음과 다양한 주기의 사인곡선을 결합하여 만든 시계열의 이변량 분석에 적용하여 그 결과를 평가하였다. 또한 실제 시계열인 북극진동지수(AOI)와 남방진동지수(SOI)를 이변량 분석하여 모의된 시계열의 분석 결과가 실제 자료의 분석결과에도 일관되게 유지되는지를 판단하였다. 본 연구의 결과를 요약하면 다음과 같다. 먼저, Bump와 Morlet 모 웨이블릿의 경우가 이론적인 예측에 보다 잘 부합하는 것으로 나타났으며, 반대로 Mexican hat 모 웨이블릿은 상대적으로 단주기의 변동 특성을, Paul 모 웨이블릿의 경우에는 장주기의 변동 특성을 잘 보여주는 것으로 나타났다. 둘째, Mexican hat과 Paul 모 웨이블릿의 경우에는 스케일 간섭이 매우 크게 나타남을 확인할 수 있었다. Bump와 Morlet 모 웨이블릿에서는 이러한 문제점이 나타나지 않았다. 소위 동조화(co-movement)를 탐색하는 능력은 Morlet와 Paul 모 웨이블릿이 가지고 있는 것으로 파악되었다. 특히, Morlet의 경우 이 특성이 더욱 명확히 나타남을 확인하였다. 결과적으로 Morlet 모 웨이블릿이 이변량 웨이블릿 분석에 가장 무난한 것으로 확인되었다. 마지막으로, AOI와 SOI 자료의 이변량 웨이블릿 분석에서는 대략 2-4년 정도의 주기성분이 약 20년 빈도로 서로 동조하고 있음을 확인할 수 있었다.

Keywords

References

  1. Aguiar-Conraria, L., Azevedo, N., and Soares, M. J. (2008). "Using wavelets to decompose the time-frequency effects of monetary policy." Physica A: Statistical mechanics and its Applications, Vol. 387, No. 12, pp. 2863-2878. https://doi.org/10.1016/j.physa.2008.01.063
  2. Ahadi, M., and Bakhtiar, M. S. (2010). "Leak detection in water-filled plastic pipes through the application of tuned wavelet transforms to acoustic emission signals." Applied Acoustics, Vol. 71, No. 7, pp. 634-639. https://doi.org/10.1016/j.apacoust.2010.02.006
  3. Ahuja, N., Lertrattanapanich, S., and Bose, N. K. (2005). "Properties determining choice of mother wavelet." IEE Proceedings-Vision, Image and Signal Processing, Vol. 152, No. 5, pp. 659-664. https://doi.org/10.1049/ip-vis:20045034
  4. Appenzeller, C., Stocker, T. F., and Anklin, M. (1998). "North Atlantic Oscillation dynamics recorded in Greenland ice cores." Science, Vol. 282, No. 5388, pp. 446-449. https://doi.org/10.1126/science.282.5388.446
  5. Baliunas, S., Frick, P., Sokoloff, D., and Soon, W. (1997). "Time scales and trends in the central England temperature data (1659-1990): A wavelet analysis." Geophysical Research Letters, Vol. 24, No. 11, pp. 1351-1354. https://doi.org/10.1029/97GL01184
  6. Bolton, E. W., Maasch, K. A., and Lilly, J. M. (1995). "A wavelet analysis of Plio-Pleistocene climate indicators: A new view of periodicity evolution." Geophysical Research Letters, Vol. 22, No. 20, pp. 2753-2756. https://doi.org/10.1029/95GL02799
  7. Cazelles, B., Chavez, M., Berteaux, D., Menard, F., Vik, J. O., Jenouvrier, S., and Stenseth, N. C. (2008). "Wavelet analysis of ecological time series." Oecologia, Vol. 156, No. 2, pp. 287-304. https://doi.org/10.1007/s00442-008-0993-2
  8. Chan, T. F., and Shen, J. J. (2005). Image processing and analysis: variational, PDE. Wavelet, and Stochastic Methods, SIAM, Philadelphia, P.A.
  9. Chatfield, J. R. (1989). The analysis of time series: an introduction. Chapman and Hall, London, U.K.
  10. De Boer, R. W. (1985). Beat-to-beat blood-Pressure Fluctuations and Heart-Rate Variability in Man: Physiological Relationships, Analysis Techniques and a Simple Model. Ph. D. dissertation, University of Amsterdam, Amsterdam, Netherlands.
  11. De Moortel, I., Munday, S. A., and Hood, A. W. (2004). "Wavelet analysis: the effect of varying basic wavelet parameters." Solar Physics, Vol. 222, No. 2, pp. 203-228. https://doi.org/10.1023/B:SOLA.0000043578.01201.2d
  12. Dyllon, S., and Xiao, P. (2018). "Wavelet transform for educational network data traffic analysis." Wavelet Theory and Its Applications, Edited by Radhakrishnan, S., Intechopen, London, U.K., pp. 155-172.
  13. Echer, M. S., Echer, E., Nordemann, D. J., Rigozo, N. R., and Prestes, A. (2008). "Wavelet analysis of a centennial (1895-1994) southern Brazil rainfall series (Pelotas, 31 46' 19 '' S 52 20' 33 '' W)." Climatic Change, Vol. 87, No. 3-4, pp. 489-497. https://doi.org/10.1007/s10584-007-9296-6
  14. Faisal, M. F., and Mohamed, A. (2008). "Comparing the performance of various mother wavelet functions in detecting actual 3-phase voltage sags." 2008 IEEE 2nd International Power and Energy Conference, IEEE, Johor Bahru, Malaysia, pp. 657-661.
  15. Farge, M. (1992). "Wavelet transforms and their applications to turbulence." Annual Review of Fluid Mechanics, Vol. 24, No. 1, pp. 395-458. https://doi.org/10.1146/annurev.fl.24.010192.002143
  16. Flanders, M. (2002). "Choosing a wavelet for single-trial EMG." Journal of Neuroscience Methods, Vol. 116, No. 2, pp. 165-177. https://doi.org/10.1016/S0165-0270(02)00038-9
  17. Fu, S., Muralikrishnan, B., and Raja, J. (2003). "Engineering surface analysis with different wavelet bases." Journal of Manufacturing Science and Engineering, Vol. 125, No. 4, pp. 844-852. https://doi.org/10.1115/1.1616947
  18. Ghanbari, R. N., Bravo, H. R., Magnuson, J. J., Hyzer, W. G., and Benson, B. J. (2009). "Coherence between lake ice cover, local climate and teleconnections (Lake Mendota, Wisconsin)." Journal of Hydrology, Vol. 374, No. 3-4, pp. 282-293. https://doi.org/10.1016/j.jhydrol.2009.06.024
  19. Grinsted, A., Moore, J. C., and Jevrejeva, S. (2004). "Application of the cross wavelet transform and wavelet coherence to geophysical time series." Nonlinear Processes in Geophysics, Vol. 11, No. 5-6, pp. 561-566. https://doi.org/10.5194/npg-11-561-2004
  20. Jiang, Q., and Suter, B. W. (2017). "Instantaneous frequency estimation based on synchrosqueezing wavelet transform." Signal Processing, Vol. 138, pp. 167-181. https://doi.org/10.1016/j.sigpro.2017.03.007
  21. Kailas, S. V., and Narasimha, R. (2000). "Quasi-cycles in monsoon rainfall by wavelet analysis." Current Science, Vol. 78, No. 5, pp. 592-595.
  22. Kiskin, I., Zilli, D., Li, Y., Sinka, M., Willis, K., and Roberts, S. (2018). "Bioacoustic detection with wavelet-conditioned convolutional neural networks." Neural Computing and Applications, pp. 1-13.
  23. Kristoufek, L. (2017). "Has global warming modified the relationship between sunspot numbers and global temperatures?." Physica A: Statistical Mechanics and its Applications, Vol. 468, pp. 351-358. https://doi.org/10.1016/j.physa.2016.10.089
  24. Labat, D. (2010). "Cross wavelet analyses of annual continental freshwater discharge and selected climate indices." Journal of Hydrology, Vol. 385, No. 1-4, pp. 269-278. https://doi.org/10.1016/j.jhydrol.2010.02.029
  25. Labat, D., Ronchail, J., and Guyot, J. L. (2005). "Recent advances in wavelet analyses: Part 2-Amazon, Parana, Orinoco and Congo discharges time scale variability." Journal of Hydrology, Vol. 314, No. 1-4, pp. 289-311. https://doi.org/10.1016/j.jhydrol.2005.04.004
  26. Lee, H., and Yoo, C. (2019). "Evaluation of arctic oscillation effect on monsoons and typhoons in Korea using bivariate wavelet analysis." Journal of the Korean Society of Hazard Mitigation, Vol. 19, No. 1, pp. 71-84. https://doi.org/10.9798/KOSHAM.2019.19.1.71
  27. Liu, P. C. (1994). "Wavelet spectrum analysis and ocean wind waves." Wavelet in Geophysics, Edited by E. Fougoula-Georgiou and P. Kummar, Vol. 4, Academic Press. San Diego, C.A., pp. 151-166.
  28. Meyers, C., and Jones, T. B. (1993). Promoting active learning. Strategies for the college classroom. Jossey-Bass, San Francisco, C.A.
  29. Misiti, M., Misiti, Y., Oppenheim, G., and Poggi, J. M. (2013). Wavelets and their Applications, John Wiley & Sons, New York, N.Y.
  30. Mojsilovic, A., Popovic, M. V., and Rackov, D. M. (2000). "On the selection of an optimal wavelet basis for texture characterization." IEEE Transactions on image processing, Vol. 9, No. 12, pp. 2043-2050. https://doi.org/10.1109/83.887972
  31. Nakken, M. (1999). "Wavelet analysis of rainfall-runoff variability isolating climatic from anthropogenic patterns." Environmental Modelling & Software, Vol. 14, No. 4, pp. 283-295. https://doi.org/10.1016/S1364-8152(98)00080-2
  32. National Center for Environmental Information (NCEI) (2019). United States, accessed 1 July 2019, .
  33. National Center for Environmental Prediction (NCEP) (2019). United States, accessed 1 July 2019, .
  34. Ngui, W. K., Leong, M. S., Hee, L. M., and Abdelrhman, A. M. (2013). "Wavelet analysis: mother wavelet selection methods." Applied mechanics and materials, Vol. 393. pp. 953-958. https://doi.org/10.4028/www.scientific.net/AMM.393.953
  35. Prokoph, A., and Patterson, R. T. (2005). "From depth scale to time scale: transforming sediment image color data into a high-resolution time series." Image Analysis, Sediments and Paleoenvironments, Edited by Francus, P., Springer, Dordrecht, Netherlands, pp. 143-164.
  36. Rayeezuddin, M. D., and Reddy, B. K. (2015). "A new continuous wavelet family and its application to analysis of elementary periodic signals." International Journal of Science and Research, Vol. 4, No. 10, pp. 620-623.
  37. Rayeezuddin, M. D., Narsimulu, G., and Reddy, B. K. (2018). "On comparison of some properties of proposed continuous wavelets with existing one." International Journal of Pure and Applied Mathematics, Vol. 118, No. 1, pp. 87-94.
  38. Reboredo, J. C., Rivera-Castro, M. A., and Ugolini, A. (2017). "Wavelet-based test of co-movement and causality between oil and renewable energy stock prices." Energy Economics, Vol. 61, pp. 241-252. https://doi.org/10.1016/j.eneco.2016.10.015
  39. Ropelewski, C. F., and Halpert, M. S. (1986). "North American precipitation and temperature patterns associated with the El Nino/Southern Oscillation (ENSO)." Monthly Weather Review, Vol. 114, No. 12, pp. 2352-2362. https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2
  40. Rua, A. (2010). "Measuring comovement in the time-frequency space." Journal of Macroeconomics, Vol. 32, No. 2, pp. 685-691. https://doi.org/10.1016/j.jmacro.2009.12.005
  41. Ryu, Y., Shin, J. Y., Nam, W., and Heo, J. H. (2012). "Forecast of the daily inflow with artificial neural network using wavelet transform at Chungju Dam." Journal of Korea Water Resources Association, KWRA, Vol. 45, No. 12, pp. 1321-1330. https://doi.org/10.3741/JKWRA.2012.45.12.1321
  42. Safavian, L. S., Kinsner, W., and Turanli, H. (2005). "Aquantitative comparison of different mother wavelets for characterizing transients in power systems." Canadian Conference on Electrical and Computer Engineering, IEEE, Saskatoon, Canada, pp. 1461-1464.
  43. Schaefli, B., Maraun, D., and Holschneider, M. (2007). "What drives high flow events in the Swiss Alps? Recent developments in wavelet spectral analysis and their application to hydrology." Advances in Water Resources, Vol. 30, No. 12, pp. 2511-2525. https://doi.org/10.1016/j.advwatres.2007.06.004
  44. Schulte, J. A., Najjar, R. G., and Li, M. (2016). "The influence of climate modes on streamflow in the Mid-Atlantic region of the United States." Journal of Hydrology: Regional Studies, Vol. 5, pp. 80-99. https://doi.org/10.1016/j.ejrh.2015.11.003
  45. Smith, L. C., Turcotte, D. L., and Isacks, B. L. (1998). "Stream flow characterization and feature detection using a discrete wavelet transform." Hydrological processes, Vol. 12, No. 2, pp. 233-249. https://doi.org/10.1002/(SICI)1099-1085(199802)12:2<233::AID-HYP573>3.0.CO;2-3
  46. Tang, B., Liu, W., and Song, T. (2010). "Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution." Renewable Energy, Vol. 35, No. 12, pp. 2862-2866. https://doi.org/10.1016/j.renene.2010.05.012
  47. Thompson, D. W., and Wallace, J. M. (1998). "The Arctic Oscillation signature in the wintertime geopotential Height and temperature fields." Geophysical Research Letters, Vol. 25, No. 9, pp. 1297-1300. https://doi.org/10.1029/98GL00950
  48. Torrence, C., and Compo, G. P. (1998). "A practical guide to wavelet analysis." Bulletin of the American Meteorological society, Vol. 79, No. 1, pp. 61-78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
  49. Troup, A. J. (1965). "The 'southern oscillation'." Quarterly Journal of the Royal Meteorological Society, Vol. 91, No. 390, pp. 490-506. https://doi.org/10.1002/qj.49709139009
  50. Walker, G. T. (1932). "World Weather V." Memoirs of the Royal Meteorological Society, Vol. 4, pp. 53-84.
  51. Wang, S. Y., Liu, X., Yianni, J., Aziz, T. Z., and Stein, J. F. (2004). "Extracting burst and tonic components from surface electromyograms in dystonia using adaptive wavelet shrinkage." Journal of neuroscience methods, Vol. 139, No. 2, pp. 177-184. https://doi.org/10.1016/j.jneumeth.2004.04.024
  52. Zhao, G., Jiang, D., Diao, J., and Qian, L. (2004). "Application of wavelet time-frequency analysis on fault diagnosis for steam turbine." 5th International Conference of Acoustical and Vibratory Surveillance Methods and Diagnostic Techniques, CETIM, Senlis, France.