• Title/Summary/Keyword: 모형안

Search Result 1,421, Processing Time 0.03 seconds

Development and Application of ICT Teaching Learning Material for Physical Education Applied to the Inquiry Learning Model (탐구 학습 모형을 적용한 체육과 ICT활용 교수 학습 과정안 개발 및 적용)

  • Lee, Jae-Mu;Kim, Jong-Hee
    • Journal of The Korean Association of Information Education
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This study proposes to develop an ICT teaching learning material for physical education based on the inquiry learning model, and to verify its efficiency by applying that material. Departing from the conventional simple applications of ICT, this paper studies ICT applications based on a 'learning model' with specific teaching-learning processes and methods in order to achieve the greatest effect for the final learning objective. This study reconstructed an inquiry-teaching-learning model for track and field and gymnastics lessons to fit ICT teaching-learning material, defined at each level with a process model; and developed a feasible curriculum. The developed material was applied to the 5th grade lessons. The result of this application indicated increased efficiency in the teaching-learning objectives, inducing interest in learning as well as in other technical or functional aspects.

  • PDF

Sensitivity assessment of environmental drought based on Bayesian Network model in the Nakdong River basin (베이지안 네트워크 모형 기반의 환경적 가뭄의 민감도 평가: 낙동강 유역을 대상으로)

  • Yoo, Jiyoung;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.79-79
    • /
    • 2021
  • 기상학적 측면에서 강수 부족으로 인한 수생태환경(하천), 호소환경(저수지) 및 유역환경(중권역)으로 미치는 환경학적 가뭄의 영향을 평가하기 위한 시도는 매우 중요하다. 만약 동일한 규모의 강수부족 현상이 발생할지라도, 환경적 측면에서의 수질 및 수생태에 미치는 영향이 매우 큰 유역이 있고, 반면 어느 정도의 복원력을 유지할 수 있는 유역이 있을 것이다. 즉, 서로 다른 유역환경에 따라 가뭄으로 인한 환경적 영향은 달라질 가능성이 크며, 이처럼 환경적 가뭄에 취약한 지역을 위해서는 지속적인 환경가뭄 모니터링이 중요하다. 환경적 측면에서 가뭄의 영향을 평가하기 위해서는 다양한 수질 관련 항목을 연계한 환경가뭄 감시가 중요하며, 이와 더불어 가뭄과 관련한 다양한 이해관계자 간의 효율적인 의사결정 도구가 필요하다. 따라서 본 연구에서는 다양한 시나리오 정보를 제공할 수 있는 베이지안 네트워크 모형을 적용하여 환경가뭄 민감도 평가 방안을 제시하고자 한다. 본 모형에서는 수질 문제가 가장 심하게 대두되고 있는 낙동강 유역을 대상으로, 기상학적 가뭄에 의한 수생태 및 환경 관련 변수들(BOD, T-P, TOC)의 복잡한 상호의존성을 파악할 수 있는 베이지안 네트워크 모형을 활용하였다. 또한, 기상학적 가뭄에 의한 상류와 하류 간의 환경적 영향을 연계하여 해석하기 위한 모형을 구축하였다. 그 결과, 기상학적 가뭄으로 인한 환경적 민감도가 크게 나타나는 중권역(예: 임하댐유역)과 이와 반대인 중권역(예: 병성천유역)의 구분이 가능하였다. 또한, 상류에서 발생한 심한 기상학적 가뭄이 하류 지역 내 환경적인 영향을 지속할 가능성이 있음을 확인되었다. 따라서 본 연구에서 제안한 방법은 환경적 가뭄의 취약지역을 우선 선정하고, 나아가 상-하류 간의 환경적 가뭄을 감시하는 데 있어 활용도가 있을 것으로 기대된다.

  • PDF

A Study on the knowledge sharing in the academic sector (효율적인 대학 강의안 공유에 미치는 영향요인에 관한 연구)

  • Lee Hyung-Mi;Kim Seong-Hee
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2006.08a
    • /
    • pp.79-86
    • /
    • 2006
  • 최근 지식 정보화 사회로의 이행이 급속도로 진행됨에 따라 과거에 비해 대학에서는 강의와 여구 활동에 대한 정보요구의 증가가 계속되고 있으며, 또한 대학의 연구나 교과목들이 점차 학제적 성격을 띄게 됨으로써 동료와의 지식공유에 대한 중요성이 날로 부각되고 있다. 이에 본 연구에서는 대학 내에서의 강의안 공유에 초점을 두고 강의안 공유를 활성화 할 수 있는 요인들을 규명하고 이들 사이의 영향관계를 실증분석을 통해 밝혀 내고자 하였다. 문헌연구를 통해 평가와 보상, IT인프라기반의 의사소통채널, 인지성, 신뢰도, 개방적인 의사소통, 협력도를 대학 내 강의안 공유에 대한 영향요인으로 하여 연구모형을 설정하였다. 연구모형의 검증은 모 대학을 대상으로 실시한 설문조사에서 얻어진 71개의 설문지 데이터를 중심으로 가설검증이 수행되었다. 연구결과 구조적 요인인 평가와 보상, 그리고 관계적 요인에서의 인지성만이 대학의 강의안 공유에 유의미한 영향을 미치는 것으로 밝혀졌다.

  • PDF

Bayesian networks-based probabilistic forecasting of hydrological drought considering drought propagation (가뭄의 전이 현상을 고려한 수문학적 가뭄에 대한 베이지안 네트워크 기반 확률 예측)

  • Shin, Ji Yae;Kwon, Hyun-Han;Lee, Joo-Heon;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.11
    • /
    • pp.769-779
    • /
    • 2017
  • As the occurrence of drought is recently on the rise, the reliable drought forecasting is required for developing the drought mitigation and proactive management of water resources. This study developed a probabilistic hydrological drought forecasting method using the Bayesian Networks and drought propagation relationship to estimate future drought with the forecast uncertainty, named as the Propagated Bayesian Networks Drought Forecasting (PBNDF) model. The proposed PBNDF model was composed with 4 nodes of past, current, multi-model ensemble (MME) forecasted information and the drought propagation relationship. Using Palmer Hydrological Drought Index (PHDI), the PBNDF model was applied to forecast the hydrological drought condition at 10 gauging stations in Nakdong River basin. The receiver operating characteristics (ROC) curve analysis was applied to measure the forecast skill of the forecast mean values. The root mean squared error (RMSE) and skill score (SS) were employed to compare the forecast performance with previously developed forecast models (persistence forecast, Bayesian network drought forecast). We found that the forecast skill of PBNDF model showed better performance with low RMSE and high SS of 0.1~0.15. The overall results mean the PBNDF model had good potential in probabilistic drought forecasting.

A Study on the War Simulation and Prediction Using Bayesian Inference (베이지안 추론을 이용한 전쟁 시뮬레이션과 예측 연구)

  • Lee, Seung-Lyong;Yoo, Byung Joo;Youn, Sangyoun;Bang, Sang-Ho;Jung, Jae-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.77-86
    • /
    • 2021
  • A method of constructing a war simulation based on Bayesian Inference was proposed as a method of constructing heterogeneous historical war data obtained with a time difference into a single model. A method of applying a linear regression model can be considered as a method of predicting future battles by analyzing historical war results. However it is not appropriate for two heterogeneous types of historical data that reflect changes in the battlefield environment due to different times to be suitable as a single linear regression model and violation of the model's assumptions. To resolve these problems a Bayesian inference method was proposed to obtain a post-distribution by assuming the data from the previous era as a non-informative prior distribution and to infer the final posterior distribution by using it as a prior distribution to analyze the data obtained from the next era. Another advantage of the Bayesian inference method is that the results sampled by the Markov Chain Monte Carlo method can be used to infer posterior distribution or posterior predictive distribution reflecting uncertainty. In this way, it has the advantage of not only being able to utilize a variety of information rather than analyzing it with a classical linear regression model, but also continuing to update the model by reflecting additional data obtained in the future.

Design of Emergency Spillway Using Hydraulic and Numerical Model - ImHa Multipurpose Dam (수리모형실험과 수치모의를 이용한 비상여수로 설계-임하댐)

  • Jeon, Tae-Myoung;Kim, Hyung-Il;Park, Hyung-Seop;Baek, Un-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1726-1731
    • /
    • 2006
  • Hydraulic and numerical models were applied to design the emergency spillway of ImHa multipurpose Dam. For the numerical model, FLOW-3D was used to evaluate the three-dimensional flow in the spillway. The results of hydraulic model were compared with those of the numerical model which were separated into four zones such as approaching zone, weir zone, transition & tunnel chute zone, and dissipator zone. Moreover, for optimum design of the spillway, the hydraulic and numerical models were performed for the basic plan. Solving the problems of the basic plan, the optimized alternative design was proposed. The numerical models for various conditions of the spillway were performed, which is not always feasible in the hydraulic models. Verified by using the hydraulic models, the optimum alternative design was proposed.

  • PDF

Bayesian Analysis of a Zero-inflated Poisson Regression Model: An Application to Korean Oral Hygienic Data (영과잉 포아송 회귀모형에 대한 베이지안 추론: 구강위생 자료에의 적용)

  • Lim, Ah-Kyoung;Oh, Man-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.505-519
    • /
    • 2006
  • We consider zero-inflated count data, which is discrete count data but has too many zeroes compared to the Poisson distribution. Zero-inflated data can be found in various areas. Despite its increasing importance in practice, appropriate statistical inference on zero-inflated data is limited. Classical inference based on a large number theory does not fit unless the sample size is very large. And regular Poisson model shows lack of St due to many zeroes. To handle the difficulties, a mixture of distributions are considered for the zero-inflated data. Specifically, a mixture of a point mass at zero and a Poisson distribution is employed for the data. In addition, when there exist meaningful covariates selected to the response variable, loglinear link is used between the mean of the response and the covariates in the Poisson distribution part. We propose a Bayesian inference for the zero-inflated Poisson regression model by using a Markov Chain Monte Carlo method. We applied the proposed method to a Korean oral hygienic data and compared the inference results with other models. We found that the proposed method is superior in that it gives small parameter estimation error and more accurate predictions.

Bayesian Analysis of a Stochastic Beta Model in Korean Stock Markets (확률베타모형의 베이지안 분석)

  • Kho, Bong-Chan;Yae, Seung-Min
    • The Korean Journal of Financial Management
    • /
    • v.22 no.2
    • /
    • pp.43-69
    • /
    • 2005
  • This study provides empirical evidence that the stochastic beta model based on Bayesian analysis outperforms the existing conditional beta model and GARCH model in terms of the estimation accuracy and the explanatory power in the cross-section of stock returns in Korea. Betas estimated by the stochastic beta model explain $30{\sim}50%$ of the cross-sectional variation in stock-returns, whereas other time-varying beta models account for less than 3%. Such a difference in explanatory power across models turns out to come from the fact that the stochastic beta model absorbs the variation due to the market anomalies such as size, BE/ME, and idiosyncratic volatility. These results support the rational asset pricing model in that market anomalies are closely related to the variation of expected returns generated by time-varying betas.

  • PDF

Development of Pedestrian Fatality Model using Bayesian-Based Neural Network (베이지안 신경망을 이용한 보행자 사망확률모형 개발)

  • O, Cheol;Gang, Yeon-Su;Kim, Beom-Il
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.2 s.88
    • /
    • pp.139-145
    • /
    • 2006
  • This paper develops pedestrian fatality models capable of producing the probability of pedestrian fatality in collision between vehicles and pedestrians. Probabilistic neural network (PNN) and binary logistic regression (BLR) ave employed in modeling pedestrian fatality pedestrian age, vehicle type, and collision speed obtained from reconstructing collected accidents are used as independent variables in fatality models. One of the nice features of this study is that an iterative sampling technique is used to construct various training and test datasets for the purpose of better performance comparison Statistical comparison considering the variation of model Performances is conducted. The results show that the PNN-based fatality model outperforms the BLR-based model. The models developed in this study that allow us to predict the pedestrian fatality would be useful tools for supporting the derivation of various safety Policies and technologies to enhance Pedestrian safety.