• Title/Summary/Keyword: 모터 토크

Search Result 358, Processing Time 0.025 seconds

A Brake Pad Wear Compensation Method and Performance Evaluation for ElectroMechanical Brake (전기기계식 제동장치의 제동패드 마모보상방법 및 성능평가)

  • Baek, Seung-Koo;Oh, Hyuck-Keun;Park, Choon-Soo;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.581-588
    • /
    • 2020
  • This study examined a brake pad wear compensation method for an Electro-Mechanical Brake (EMB) using the braking test device. A three-phase Interior Permanent Magnet Synchronous Motor (IPMSM) was applied to drive the actuator of an EMB. Current control, speed control, and position control were used to control the clamping force of the EMB. The wear compensation method was performed using a software algorithm that updates the motor model equation by comparing the motor output torque current with a reference current. In addition, a simple first-order motor model equation was applied to estimate the output clamping force. The operation time to the maximum clamping force increased within 0.1 seconds compared to the brake pad in its initial condition. The experiment verified that the reference operating time was within 0.5 seconds, and the maximum value of the clamping force was satisfied under the wear condition. The wear compensation method based on the software algorithm in this paper can be performed in the pre-departure test of rolling stock.

The Control Method of In-Wheel PMSM for Electric Scooter using Speed Observer (속도 관측기를 이용한 전기스쿠터용 IN-WHEEL 영구자석 동기 전동기의 제어 방법)

  • Son, Tae-Sik;Lee, Yong-Kyun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Mok, Hyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.130-136
    • /
    • 2011
  • This paper presents the torque control algorithm of a permanent magnet synchronous motor(PMSM) for an electric scooter. The volume of the in-wheel type motor is restricted due to the complicated mechanical structure in wheel of an electric scooter, so the hall sensors instead of resolver and encoder for the rotor position sensors are installed. In this paper, the rotor speed and position are estimated from the speed estimator for vector control of a PMSM with hall sensors. The motor starts to rotate at standstill in BLDC mode with 120 degree conduction. After start up, the operating mode is changed to the vector control with maximum torque per ampere(MTPA) operation at low speeds and flux weakening control at high speeds. The performance of the proposed control algorithm is verified through the experiment in the electric scooter.

Dynamic Performance Analyzing of In-wheel Vehicle considering the Real Driving Conditions and Development of Derivation System for Applying Dynamometer Using Drive Motor's Dynamic Load Torque (실차 주행 조건을 고려한 인휠 차량 거동 해석 및 동력 시험계 부하 토크 인가를 위한 구동 모터의 동적 부하 도출시스템 개발)

  • Son, Seungwan;Kim, Kiyoung;Cha, Suk Won;Lim, Won Sik;Kim, Jungyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.294-301
    • /
    • 2016
  • This paper discusses about analyzing in-wheel vehicle's dynamic motion and load torque. Since in-wheel vehicle controls each left and right driving wheels, it is dangerous if vehicle's wheels are not in a cooperative control. First, this study builds the main wheel control logic using PID control theory and evaluates the stability. Using Carsim-Matlab/Simulink, vehicle dynamic motion is simulated in virtual 3D driving road. Through this, in-wheel vehicle's driving performance can be analyzed. The target vehicle is a rear-wheel drive in D-class sedan. Second, by using the first In-wheel vehicle's performance results, it derivate the drive motor's dynamic load torque for applying the dynamometer. Extracted load torque impute to dynamometer's load motor, linear experiment in dynamometer can replicated the 3-D road driving status. Also it, will be able to evaluate the more accurate performance analysis and stability, as a previous step of actual vehicle experiment.

Efficiency Optimization Control of SynRM Drive using Multi-AFLC (다중 AFLC를 이용한 SynRM 드라이브의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jang, Mi-Geum;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.44-54
    • /
    • 2010
  • Optimal efficiency control of synchronous reluctance motor(SynRM) is very important in the sense of energy saving and conservation of natural environment because the efficiency of the SynRM is generally lower than that of other types of AC motors. This paper is proposed a novel efficiency optimization control of SynRM considering iron loss using multi adaptive fuzzy learning controller(AFLC). The optimal current ratio between torque current and exciting current is analytically derived to drive SynRM at maximum efficiency. This paper is proposed an efficiency optimization control for the SynRM which minimizes the copper and iron losses. There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization control is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. The control performance of the proposed controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

Accelerated Life Test of In-Wheel Motor for Mobile Robot (이동로봇용 In-Wheel Motor의 가속수명시험)

  • Kim, Young-Ki;Kim, Sang-Hoon;Kim, Hag-Wone;Mok, Hyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.498-505
    • /
    • 2010
  • In-Wheel System is a high-efficiency system to supply a new concept of platform which raises the efficiency of motor drive system and applies it to an environment-friendly automobile by installing a highly efficient electric motor directly to wheels and removing factors of power train. The proliferation of these systems is directly related to the safety of our lives, so check the reliability of the part in the development phase and should be certified. Reliability is the ability of a system or component to perform its required functions under stated conditions for a specified period of time. This paper presents to the verification methods for durability, one of reliability assessments of the Motor, the study calculated acceleration and deceleration torque and the effective torque from driving conditions of In-Wheel Motor, and based on this, it reduced the test time and suggested the verification methods of In-Wheel Motor reliability through the accelerated life test.

Sliding Mode Controller Design Using Virtual State and State Decoupling for IPM Motor (가상 상태와 상태 디커플링을 이용한 IPM전동기용 슬라이딩 모드 제어기의 설계)

  • Kim, Min-Chan;Park, Seung-Kyu;Yoon, Seong-Sik;Kwak, Gun-Pyong;Park, Young-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.514-521
    • /
    • 2009
  • The current control for Interior-mounted Permanent Magnet Motor(IPM Motor) is more complicate than Surface-mounted Permanent magnet Motor(SPM Motor) because of its torque characteristic depending on the reluctance. For high performance torque control, it requirs state decoupling between d-axis current and q-axis current dynamics. However the variation of the inductances, which couples the state dynamics of the currents, makes the state decoupling difficult. So some decoupling methods have developed to cope this variation and each current can be regulated independently. This paper proposes a novel approach for fully decoupling the states cross-coupling using sliding mode control with virtual state for IPM Motor. As a result, in spite of the parameter uncertainty and disturbance, the proposed sliding surface can have the dynamics of nominal system controlled by PI controller.

Reliability of Modified Ashworth Scale Using a Haptic Robot Finger Simulating Finger Spasticity (손가락 경직을 모사하는 로봇 시뮬레이터를 이용한 경직도 검진의 신뢰도 평가)

  • Ha, Dokyeong;Park, Hyung-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.125-133
    • /
    • 2017
  • This paper presents the inter-rater reliability of finger spasticity assessment tested realized by using finger simulator that mimics finger spasticity of patients after a stroke. For controlling the simulator torque, finger spasticity was modeled, and the model parameters were obtained by measuring quantitative data while grading based on Modified Ashworth Scale (MAS). A robotic finger simulator was designed for mimicking finger spasticity. Evaluation of this simulator with the help of seven rehabilitation doctors showed that the simulator had a Cohen's kappa value of 0.619 for Metacarpophalangeal Joint and 0.514 for Proximal Interphalangeal Joint. Fleiss' kappa between raters is 0.513 for Metacarpophalangeal Joint and 0.486 for Proximal Interphalangeal Joint. Therefore, the spasticity assessment made by MAS grade system is not reliable owing to the subjectivity of the assessment. The proposed robotic simulator can be used as a training tool for improving the reliability of the spasticity assessment.

Torque Distribution Algorithm of Independent Drive Articulated Vehicle for Small Radius Turning Performance (독립 구동 굴절차량의 회전반경 감소를 위한 토크분배 알고리즘)

  • Lee, Kibeom;Hwang, Karam;Tak, Junyoung;Suh, In-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.336-341
    • /
    • 2014
  • The articulated structures seen in train or tram applications are being applied in road transportation systems, for use in mass passenger transit. When articulated vehicles are driven on public roads, they no longer follow a guided track. Therefore, there are a lot of control elements that need to be considered, such as turning radius, swept path width, off-tracking, and swing-out. Some of the currently available articulated vehicles on roads are equipped with an independent drive system; a system that has one motor at each wheel. Through this drive system, each wheel can be independently controlled, making precise and quick dynamic stability control possible. In this paper, we propose a torque distribution algorithm that can reduce the overall turning radius of the articulated vehicle, which has been verified through dynamic simulation.

Transient Torsional Vibration Analysis of Ice-class Propulsion Shafting System Driven by Electric Motor (전기 모터 구동 대빙급 추진 시스템의 과도 비틀림 진동 분석)

  • Barro, Ronald D.;Lee, Don Chool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.667-674
    • /
    • 2014
  • A ship's propulsion shafting system is subjected to varying magnitudes of intermittent loadings that pose great risks such as failure. Consequently, the dynamic characteristic of a propulsion shafting system must be designed to withstand the resonance that occurs during operation. This resonance results from hydrodynamic interaction between the propeller and fluid. For ice-class vessels, this interaction takes place between the propeller and ice. Producing load- and resonance-induced stresses, the propeller-ice interaction is the primary source of excitation, making it a major focus in the design requirements of propulsion shafting systems. This paper examines the transient torsional vibration response of the propulsion shafting system of an ice-class research vessel. The propulsion train is composed of an electric motor, flexible coupling, spherical gears, and a propeller configuration. In this paper, the theoretical analysis of transient torsional vibration and propeller-ice interaction loading is first discussed, followed by an explanation of the actual transient torsional vibration measurements. Measurement data for the analysis were compared with an applied estimation factor for the propulsion shafting design torque limit, and they were evaluated using an existing international standard. Addressing the transient torsional vibration of a propulsion shafting system with an electric motor, this paper also illustrates the influence of flexible coupling stiffness design on resulting resonance. Lastly, the paper concludes with a proposal to further study the existence of negative torque on a gear train and its overall effect on propulsion shafting systems.

Intelligent Hexapod robot for the support walking of the aged (고령자 보행 지원을 위한 지능형 6족 로봇)

  • Lee, Sang-Mu;Kim, Sang-Hoon
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.534-539
    • /
    • 2008
  • This paper is about intelligent hexapod robot for the support walking of the aged person. The robot using various sensors and small camera has various abilities of forward backward walking, turing left or right, control the speed of walking, avoiding the obstacles and detecting risky situation of fire or gas. To let the aged feel soft and safe walking, we used special servo motor and developed hexapod walking mechanism and effective algorithm.

  • PDF