The Journal of the Korea institute of electronic communication sciences
/
v.16
no.4
/
pp.617-624
/
2021
The accurate estimation of the number of signals included in the received signal is required for the AOA(: Angle-of-Arrival) estimation, the interference suppression, the signal reception, etc. AIC(: Akaike Information Criterion) and MDL(: Minimum Description Length) algorithms, which are known as the typical algorithms to estimate the signal number, estimate the number of signals according to the minimum of each criterion. As the number of antenna elements increased, the estimation performance is enhanced, but the computational complexity is increased because values of criteria for entire antenna elements should be calculated for finding their minimum. In order to improve this problem, in this paper, we propose AIC and MDL algorithms based on the beamspace, which efficiently estimate the number of signals while reducing the computational complexity by reducing the dimension of an array antenna through the beamspace processing. In addition, we provide computer simulation results based on various scenarios for evaluating and analysing the estimation performance of the proposed algorithms.
The monopulse tracking algorithm can estimate the location of a partner station based on an RF (Radio Frequency) signal. The location of the partner station is estimated based on the monopulse ratio curve (MR-C), which is calculated based on the sum and difference signal patterns of an antenna. Therefore, the range in which the estimated location can be calculated with high accuracy increases in proportion to the linear region of MR-C. In this paper, we proposed a method to extend the linear region of the MR-C curve using the beamforming technique for the tracking antenna system using the active phased array antenna. Simulation results based on the same antenna system, it was confirmed that the linear region of MR-C was enlarged by about twice as much as the general case where the proposed method was not applied.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.14
no.6
/
pp.445-451
/
2021
Due to the recent spread and increasing damage of COVID-19, the most important measure to prevent infection is to find infected people early. Group testing which introduced half a century ago, can be used as a diagnostic method for COVID-19 and has become very efficient method. In this paper, we review the fundamental principles of existing group testing algorithms. In addition, the sparse signal reconstruction approach proposed by compressed sensing is improved and presented as a solution to group testing. Compressed sensing and group testing differ in computational methods, but are similar in that they find sparse signals. The our simulation results show the superiority of the proposed sparse signal reconstruction method. It is noteworthy that the proposed method shows performance improvement over other algorithms in the group testing schemes. It also shows performance improvement when finding a large number of defective samples.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.5
/
pp.755-762
/
2022
This paper propose a clustered algorithm that possible more efficient COVID-19 disease learning prediction within clustering using context-aware attribute information. In typically, clustering of COVID-19 diseases provides to classify interrelationships within disease cluster information in the clustering process. The clustering data will be as a degrade factor if new or newly processing information during treated as contaminated factors in comparative interrelationships information. In this paper, we have shown the solving the problems and developed a clustering algorithm that can extracting disease correlation information in using K-means algorithm. According to their attributes from disease clusters using accumulated information and interrelationships clustering, the proposed algorithm analyzes the disease correlation clustering possible and centering points. The proposed algorithm showed improved adaptability to prediction accuracy of the classification management system in terms of learning as a group of multiple disease attribute information of COVID-19 through the applied simulation results.
KIPS Transactions on Software and Data Engineering
/
v.10
no.11
/
pp.473-482
/
2021
Although several Hangul generation models using deep learning have been introduced, they require a lot of data, have a complex structure, requires considerable time and resources, and often fail in style conversion. This paper proposes a model CKFont using the components of the initial, middle, and final components of Hangul as a way to compensate for these problems. The CKFont model is an end-to-end Hangul generation model based on GAN, and it can generate all Hangul in various styles with 28 characters and components of first, middle, and final components of Hangul characters. By acquiring local style information from components, the information is more accurate than global information acquisition, and the result of style conversion improves as it can reduce information loss. This is a model that uses the minimum number of characters among known models, and it is an efficient model that reduces style conversion failures, has a concise structure, and saves time and resources. The concept using components can be used for various image transformations and compositing as well as transformations of other languages.
The Journal of the Convergence on Culture Technology
/
v.8
no.6
/
pp.1-7
/
2022
The study was conducted to determine the effectiveness of the triage training program utilizing pre-and post-training experiments designed for 119 emergency medical services teams. Objectives: This study evaluated the effectiveness of triage training programs on the accuracy of triage performed by 119 emergency medical services team staff who participated in the triage training program. Behavior: Participants in this study included 119 of the 166 EMS staff. In this program, a modified START triage consisting of a 20-minute theoretical presentation was presented to the participants. Data were analyzed using SPSS 21.0. Results: A significant increase in triage accuracy for 119 EMS teams(p<.001). And undertriage showed a significant decrease(p<.001). In addition, overtriage showed a decrease but was not statistically significant. Conclusions: The results obtained from this study showed that the triage training program was effective in improving the accuracy of the triage of multiple injury patients or disaster victims when presented to the 119 emergency medical services team. Therefore, these results suggest that it would be helpful to add triage training to the fire department's formal training program.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.65-65
/
2023
최근 기후변화로 인해 홍수, 가뭄 등 수재해가 세계 곳곳에서 빈번하게 발생하고 있다. 이로 인해 정확한 강우-유출 해석의 중요도는 높아지고 있으며 강우-유출 해석에 따라 수자원 관리 및 계획수립의 정도가 달라질 수 있다. 본 연구 대상 지역인 메콩강 유역은 중국과 동남아시아 5개국(라오스, 태국, 미얀마, 베트남, 캄보디아)을 관통하는 국가공유하천으로 기초자료의 획득이 어렵고 국가별로 구축된 자료가 질적, 양적 품질이 상이하여 수문해석에서의 기초자료로 사용하기에 불확실성이 있다. 최근 기술의 발달로 글로벌 격자형 강수자료 획득이 용이함에 있어 미계측 대유역에서의 다양한 연구들이 수행되고 있지만, 지점강수자료와 시·공간적 오차로 인한 불확실성을 내포하고 있다. 이에 본 연구에서는 글로벌 격자형 강수자료의 적용성을 평가하기 위하여 지점 격자형 강수자료(APHRODITE)와 4개의 위성강수자료(CHIRPS, CMORPH, PERSIANN-CDR, TRMM)를 수집하고 합성곱 신경망 모형인 ConvAE 기법을 이용하여 위성강수자료의 시·공간 편의 보정을 수행하였다. 또한, 하천 수위에 대한 장기간 정보 수집이 가능한 메콩강 본류 4개 관측소(Luang Prabang, Pakse, Stung Treng, Kratie)를 선정하였으며 SWAT 모형을 이용하여 매개변수 보정(2004~2013)과 격자형 강수자료의 보정 전·후의 유출모의(2014~2015) 결과를 비교·분석하였다. 격자형 강우를 이용한 보정 및 유출 분석 결과 4개의 위성강수자료 모두 성능이 향상되었으며 그 중 보정된 TRMM이 가장 우수한 성능을 보여 해당 유역에서의 APHRODITE를 대체할 수 있다고 판단하였다. 따라서 본 연구에서 제시하는 ConvAE를 이용한 보정기법과 이를 이용한 강우-유출 해석은 향후 다양한 격자형 강수자료를 활용한 미계측 대유역에서의 수문해석에서 활용이 가능할 것으로 판단된다.
Journal of the Computational Structural Engineering Institute of Korea
/
v.36
no.1
/
pp.39-48
/
2023
Because a railway bridge is designed over a long period of time and covers a large site, it involves various environmental factors and uncertainties. For this reason, design changes often occur, even if the design was thoroughly reviewed in the initial design stage. In particular, design changes of large-scale facilities, such as railway bridges, consume significant time and cost, and it is extremely inefficient to repeat all the procedures each time. In this study, a technique that can improve the efficiency of learning after design change was developed by utilizing the learning result before design change through transfer learning among deep-learning algorithms. For analysis, scenarios were created, and a database was built using a previously developed railway bridge deep-learning-based prediction system. The proposed method results in similar accuracy when learning only 1000 data points in the new domain compared with the 8000 data points used for learning in the old domain before the design change. Moreover, it was confirmed that it has a faster convergence speed.
Journal of the Korea Society of Computer and Information
/
v.28
no.4
/
pp.65-73
/
2023
In this paper, we propose a data augmentation method based on CNN(Convolutional Neural Network) learning for efficiently obtaining concrete crack image datasets. Real concrete crack images are not only difficult to obtain due to their unstructured shape and complex patterns, but also may be exposed to dangerous situations when acquiring data. In this paper, we solve the problem of collecting datasets exposed to such situations efficiently in terms of cost and time by using vector and thickness-based data augmentation techniques. To demonstrate the effectiveness of the proposed method, experiments were conducted in various scenes using U-Net-based crack detection, and the performance was improved in all scenes when measured by IoU accuracy. When the concrete crack data was not augmented, the percentage of incorrect predictions was about 25%, but when the data was augmented by our method, the percentage of incorrect predictions was reduced to 3%.
In this study paper, we examine pre-trained language models used in Multi-Goal Conversational Recommender Systems (MG-CRS), comparing and analyzing their performances of various pre-trained language models. Specifically, we investigates the impact of the sizes of language models on the performance of MG-CRS. The study targets three types of language models - of BERT, GPT2, and BART, and measures and compares their accuracy in two tasks of 'type prediction' and 'topic prediction' on the MG-CRS dataset, DuRecDial 2.0. Experimental results show that all models demonstrated excellent performance in the type prediction task, but there were notable provide significant performance differences in performance depending on among the models or based on their sizes in the topic prediction task. Based on these findings, the study provides directions for improving the performance of MG-CRS.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.