This paper presents the outlier detection algorithm in the estimation method of a source location and velocity based on two-step weighted least-squares method using time difference of arrival(TDOA) and frequency difference of arrival(FDOA) data. Since the accuracy of the estimated location and velocity of a moving source can be reduced by the outliers of TDOA and FDOA data, it is important to detect and remove the outliers. In this paper, the method to find the minimum inlier data and the method to determine whether TDOA and FDOA data are included in inliers or outliers are presented. The results of numerical simulations show that the accuracy of the estimated location and velocity is improved by removing the outliers of TDOA and FDOA data.
Image-based motion capture technology is often used in making realistic computer animation. In this paper we try to implement image-based motion rendering by fixing a camera to a PC. Existing image-based rendering algorithms have disadvantages of high computational burden or low accuracy. The former disadvantage causes too long making-time of an animation. The latter disadvantage degrades reality in making realistic animation. To compensate for those disadvantages of the existing approaches, this paper presents an image-based motion rendering algorithm with low computational load and high estimation accuracy. In the proposed approach, an incremental motion rendering algorithm with low computational load is analyzed in the respect of optimal control theory and revised so that its estimation accuracy is enhanced. If we apply this proposed approach to optic motion capture systems, we can obtain additional advantages that motion capture can be performed without any markers, and with low cost in the respect of equipments and spaces.
In this paper, we propose a Motion Vector-based Particle Filter(MVPF) for object tracking on bitstreams and a object tracking system using the MVPF. The MVPF uses motion vectors to both the transition and the observation models of a general particle filter to improve the accuracy while maintaining the number of particles. In the proposed object tracking system, the state of the target object can be predicted using the histogram of motion vectors extracted from the bitstream. In terms of precision, F-measure and IOU(Intersection Of Union), the proposed method is about 30%, 17%, and 17% better on average, respectively, in MPEG test sequences and VOT2013 sequences. Furthermore, When the tracking results are displayed in box form for subjective performance evaluation, the proposed method can track moving objects more robust than the conventional methods in all test sequences.
The automatic document classification is a method that assigns unlabeled documents to the existing classes. The automatic document classification can be applied to a classification of news group articles, a classification of web documents, showing more precise results of Information Retrieval using a learning of users. In this paper, we use the weighted Bayesian classifier that weights with keywords of a document to improve the classification accuracy. If the system cant classify a document properly because of the lack of the number of words as the feature of a document, it uses relevance word cluster to supplement the feature of a document. The clusters are made by the automatic word clustering from the corpus. As the result, the proposed system outperformed existing classification system in the classification accuracy on Korean documents.
Park, Hyuk;Hwang, Dongkyo;Park, Junho;Seong, Dong-Ook;Yoo, Jaesoo
The Journal of the Korea Contents Association
/
v.13
no.2
/
pp.52-61
/
2013
In wireless sensor networks, the geographical positioning scheme is one of core technologies for sensor applications such as disaster monitoring and environment monitoring. For this reason, studies on range-free positioning schemes have been actively progressing. The density probability scheme based on central limit theorem and normal distribution was proposed to improve the location accuracy in non-uniform sensor network environments. The density probability scheme measures the final positions of unknown nodes by estimating distance through the sensor node communication. However, it has a problem that all of the neighboring nodes have the same 1-hop distance. In this paper, we propose an efficient sensor positioning scheme that overcomes this problem. The proposed scheme performs the second positioning step through the sensing range control after estimating the 1-hop distance of each node in order to minimize the estimation error. Our experimental results show that our proposed scheme improves the accuracy of sensor positioning by about 9% over the density probability scheme and by about 48% over the DV-HOP scheme.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.9
no.2
/
pp.37-48
/
1991
In this study, conventional network adjustment and combined network adjustment methods for single network adjustment methods for single network and centric combination network were compared by the analysis of root mean square error and standard error ellipse of observed points. It can be concluded from this study that for conventional surveying methods, the accuracy is in theorder of trilateration, traverse and triangulation, and for the case of combined surveying method, the accuracy is in the order of multilateration surveying, combined traverse and combined triangulation-trilateration surveying. And when establishing new control points, the accuracy can be improved by increasing redundant observations of centric combination network instead of using the single network. Also, in case of combined traverse surveying by adding observable laterals, accuracy level of trilateration could be achieved, and it was found that traverse is effective for large areas where sighting is easy, and combined traverse surveying is effective for urban areas where sighting is difficult.
The Journal of Korean Institute of Communications and Information Sciences
/
v.39A
no.11
/
pp.645-651
/
2014
For blind equalization, we propose a method of updating an equalizer, which generates an error from selectively applying a transmitted symbol constellation and that of induced equivalently from the transmitted symbol constellation and updates the equalizer by using this error. The proposed method, by selectively using the symbol constellation effective for improvement of symbol estimation accuracy and that of effective for improvement of error performance, showed that it is possible to improve the error performance at the same time to open the eye diagram of equalizer output quickly. As a criterion applying the symbol constellation, we used the dispersion of symbol points of equalizer output. In addition, to increase the accuracy of updating an equalizer the error was controlled by using current and previous dispersions. By simulation, under multipath channel with additive noise, we verified the equalization performance of the proposed method for 64-QAM.
Journal of the Korea Society of Computer and Information
/
v.25
no.12
/
pp.203-210
/
2020
Memory-based collaborative filtering is one of the representative types of the recommender system, but it suffers from the inherent problem of data sparsity. Although many works have been devoted to solving this problem, there is still a request for more systematic approaches to the problem. This study exploits distribution of user ratings given to items for computing similarity. All user ratings are utilized in the proposed method, compared to previous ones which use ratings for only common items between users. Moreover, for similarity computation, it takes a global view of ratings for items by reflecting other users' ratings for that item. Performance is evaluated through experiments and compared to that of other relevant methods. The results reveal that the proposed demonstrates superior performance in prediction and rank accuracies. This improvement in prediction accuracy is as high as 2.6 times more than that achieved by the state-of-the-art method over the traditional similarity measures.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.458-458
/
2023
본 연구에서는 위성영상 활용 지능형 재난관측·감시 기술 개발을 목적으로 위성영상과 멀티소스(CCTV, 항공영상, 공공DB 등)와의 연계·융합을 통해 재난상황관리의 정확도 향상과 위성영상 활용성 제고 방안을 제시하고자 하였다. 위성영상 수집·배포시스템으로부터 전달되는 위성영상과 멀티소스의 연계 융합을 통한 재난상황정보의 표출을 목적으로 상황판연계 표출시스템 가동 절차와 위성영상 수집을 통한 위험탐지 알고리즘과의 연계를 위해 재난상황업무 기반 시스템 가동절차를 수립하고, 위기관리표준 매뉴얼 상 상황업무절차를 적용해 예비설계를 진행하였다. 상황실 실무자 설문을 통해 작성된 시스템 요구사항과 규격서를 기반으로 상황업무절차를 적용해 먼저업무시스템 설계를 진행하였다. 평시에는 GIS통합상황판에서 관리됨을 전제로 위성영상 수집에 대한국가적 예산 투입 측면을 고려해 중대본 설치가 필요한 대형재난 발생상황을 가정하여 상황판연계·표출시스템의 가동되도록 설계하였다. 또한, 위성영상 분석을 통한 피해위험도와 재난이력통계 등 멀티소스와 중첩한 결과를 실시간으로 표출함에 따라 상황실근무자는 재난확산 여부를 판단하고, NDMS를 통해 재난상황을 전파할 수 있도록 설계하였다. 상황판연계 표출시스템의 원활한 데이터 입/출력을 위해 재난유형 및 분석단계별 클래스 정의, 유스케이스 ID(요구기능)와 1:1 또는 1:n매칭을 수행하여 재난유형 및 분석단계별 클래스를 정의하였다. 정의된 클래스는 유스케이스인 요구기능과 매칭을 수행하였고, 시스템 가동절차 중 피해위험도분석, 재난이력통계, 중첩결과표출, NDMS 상황전파에 대한 상황업무절차를 기반으로 산불·홍수·산사태·대설·태풍 총 5종의재난별 시퀀스를 설계하였다. 마지막으로 화면정의서와 UI/UX설계서를 기반으로 Figma를 통해 시스템구동화면을 사전에 모의하였다. 향후, 진행되는 연구에서는 위성영상과 멀티소스를 연계한 화면을 실체화하여 더욱 정확한 재난상황관리가 가능하도록 NDMS 연계 상황판 표출 시스템을 개발하고자 한다.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.5
/
pp.999-1008
/
2023
Early prediction of chronic diseases such as diabetes is an important issue, and improving the accuracy of diabetes prediction is especially important. Various machine learning and deep learning-based methodologies are being introduced for diabetes prediction, but these technologies require large amounts of data for better performance than other methodologies, and the learning cost is high due to complex data models. In this study, we aim to verify the claim that DNN using the pima dataset and k-fold cross-validation reduces the efficiency of diabetes diagnosis models. Machine learning classification methods such as decision trees, SVM, random forests, logistic regression, KNN, and various ensemble techniques were used to determine which algorithm produces the best prediction results. After training and testing all classification models, the proposed system provided the best results on XGBoost classifier with ADASYN method, with accuracy of 81%, F1 coefficient of 0.81, and AUC of 0.84. Additionally, a domain adaptation method was implemented to demonstrate the versatility of the proposed system. An explainable AI approach using the LIME and SHAP frameworks was implemented to understand how the model predicts the final outcome.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.