The Sejong City was launched in July 2012 and was initially focused on the relocation of central administrative agencies, but it has been changing from an administrative city to a fourth industrial city since 2019 to a smart city and the implementation of Korea's New Deal in 2020. Identity design needs to be reevaluated accordingly. In particular, the web environment is also calling for an optimized identity design due to rapid changes in information technology such as various wearables and the Internet of Things. As the number of responsive web sites where information and communication technologies can be developed and optimized screens can be viewed increased, identity was intuitively communicated to users and designs were applied to make them more distinct and empathetic to other cities. Prior to the study, we looked at prior studies on the changing times in the web environment and the reactive web, and analyzed the identity design of the reactive web and applied minimalism characteristics step by step. Based on this, we surveyed experts and non-experts on the proposed survey by applying minimalist characteristics (simple, repeatability, and spatiality) of reactive identity and found that it was easily and intuitively recognizable in a small web environment such as mobile. Therefore, we hope that Sejong City's identity will continue to be studied in various ways and efficient management so that identity can be established in accordance with the changes of the times.
Recently, deep neural networks such as CNN are showing excellent performance in various fields such as image classification, object recognition, visual quality enhancement, etc. However, as the model size and computational complexity of deep learning models for most applications increases, it is hard to apply neural networks to IoT and mobile environments. Therefore, neural network compression algorithms for reducing the model size while keeping the performance have been being studied. In this paper, we apply few compression methods to CNN models and evaluate their performances in the embedded environment. For evaluate the performance, the classification performance and inference time of the original CNN models and the compressed CNN models on the image inputted by the camera are evaluated in the embedded board equipped with QCS605, which is a customized AI chip. In this paper, a few CNN models of MobileNetV2, ResNet50, and VGG-16 are compressed by applying the methods of pruning and matrix decomposition. The experimental results show that the compressed models give not only the model size reduction of 1.3~11.2 times at a classification performance loss of less than 2% compared to the original model, but also the inference time reduction of 1.2~2.21 times, and the memory reduction of 1.2~3.8 times in the embedded board.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.10
/
pp.8-15
/
2020
A forecasting method using deep learning does not have consistent results due to the differences in the characteristics of the dataset, even though they have the same forecasting models and parameters. For example, the forecasting model X optimized with dataset A would not produce the optimized result with another dataset B. The forecasting model with the characteristics of the dataset needs to be optimized to increase the accuracy of the forecasting model. Therefore, this paper proposes novel optimization steps for outlier removal, dataset classification, and a CNN-LSTM-based hyperparameter tuning process to forecast the daily power usage of a university campus based on the hourly interval. The proposing model produces high forecasting accuracy with a 2% of MAPE with a single power input variable. The proposing model can be used in EMS to suggest improved strategies to users and consequently to improve the power efficiency.
Han, Daegun;Bae, Young Hye;Kim, Tae-Yong;Jung, Jaewon;Lee, Choongke;Kim, Hung Soo
Journal of Wetlands Research
/
v.22
no.4
/
pp.245-256
/
2020
The purpose of this study is to evaluate the technological competitiveness of the environmental industry with developed countries in order to establish an international market expansion strategy of the Korean environmental industry and technology. In order to evaluate the competitiveness of the environmental industry and technology, core technologies were classified by the environmental industry sectors based on the classification system of the domestic and international environmental industry and technology. After developing the evaluation index data, the Delphi analysis, journal and patent analysis, as well as the export and import analysis were carried out and the standardization analysis was performed on the index data. Moreover, the weights of each evaluation index were calculated using the AHP(Analytic Hierarchy Process) method and the evaluation results of competitiveness of the environmental industry and technology in Korea, the United States, the United Kingdom, Germany, and France were derived. As a result of the evaluation, the United States was rated with the highest technological competitiveness in all the environmental industry sectors, while Korea got the lowest technological competitiveness rating compared to the 4 developed countries. In particular, Korea got the lowest level of technological competitiveness in the sector of multi-media environmental management and development for a sustainable social system. Therefore, in order for the Korean environmental industry and technology to enter the global advanced market, it is necessary to strengthen the competitiveness through the development of the fourth environmental industry based on IoT(Internet of Things), cloud, big data, mobile, and AI(Artificial Intelligence), which are currently the country's domestic strengths.
Current development of technologies related to 4th industrial revolution and the pandemic of COVID-19 lead the rapid expansion of e-marketplace. The level of competition among several companies gets increased by introducing different strategies. To cope with the current change in the market and satisfy the customers who request the better delivery service, the new concept, fulfillment, has been introduced. It makes the leadtime of process from order picking to delivery reduced and the efficiency improved. Still, the efficiency of operation in fulfillment centers constrains the service level of the entire delivery process. In order to solve this problem, several different approaches for demand forecasting and coordinating supplies using Bigdata, IoT and AI, which there exists the trivial limitations. Because it requires the most lead time for operation and leads the inefficiency the process from picking to packing the ordered items, the logistics service providers should try to automate this procedure. In this research, it has been proposed to develop the efficient plans to automate the process to move the ordered items from the location where it stores to stage for packing using AGV and AMR. The efficiency of automated devices depends on the number of items and total number of devices based on the demand. Therefore, the result of simulation based on several different scenarios has been analyzed. From the result of simulation, it is possible to identify the several factors which should be concerned for introducing the automated devices in the fulfillment centers. Also, it can be referred to make the optimal decisions based on the efficiency metrics.
This study conducted a digital forensic analysis of Signal and Telegram, two secure messengers widely used in the Android environment. As mobile messengers currently play an important role in daily life, data management and security within these apps have become very important issues. Signal and Telegram, among others, are secure messengers that are highly reliable among users, and they safely protect users' personal information based on encryption technology. However, much research is still needed on how to analyze these encrypted data. In order to solve these problems, in this study, an in-depth analysis was conducted on the message encryption of Signal and Telegram and the database structure and encryption method in Android devices. In the case of Signal, we were able to successfully decrypt encrypted messages that are difficult to access from the outside due to complex algorithms and confirm the contents. In addition, the database structure of the two messenger apps was analyzed in detail and the information was organized into a folder structure and file format that could be used at any time. It is expected that more accurate and detailed digital forensic analysis will be possible in the future by applying more advanced technology and methodology based on the analyzed information. It is expected that this research will help increase understanding of secure messengers such as Signal and Telegram, which will open up possibilities for use in various aspects such as personal information protection and crime prevention.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.19
no.4
/
pp.127-139
/
2024
This study investigates the impact of edutech characteristics and both tangible and intangible educational services on the intention to re-enroll, which is directly related to the management performance of private institutes. The study aims to propose strategies to improve re-enrollment intentions and management performance based on the findings. Private education has grown continuously, complementing the limitations of public education and increasing parental dependence. This study tested the hypothesis that edutech characteristics, intangible services, and tangible services, increasingly utilized with the development of information and communication technology, would influence re-enrollment intentions. It also examined whether rapport-building behavior with parents would have a moderating effect on this relationship. The hypothesis testing results showed that among the edutech characteristics, content, intangible services such as reliability and empathy, and tangible services such as tangibility and payment accessibility positively impacted re-enrollment intentions. The hypothesis that rapport-building behavior would moderate the relationship between educational services and re-enrollment intentions was supported for empathy in intangible services and tangibility in tangible services. Based on these findings, the study proposed three strategies to improve management performance of private institutes. First, in terms of improving and managing edutech characteristics, it suggested introducing and updating edutech content and ensuring operational stability. Second, for improving and managing intangible services, it recommended managing instructor recruitment and training to enhance quality and competence, maintaining professionalism through continuous education by credible institutions, and providing level-based education for students based on the qualitative improvement of educational programs. Third, to improve and manage tangible services, it suggested setting appropriate tuition fees, offering various payment methods (online, mobile, card, bank transfer) unrestricted by time and place, and equipping interiors and facilities that enable focused learning. Additionally, considering the moderating effect of rapport-building behavior, it emphasized that improvements and management requiring costs are necessary, but making parents feel a high level of tangibility through rapport-building is also important. Furthermore, given the increasing importance of edutech based on information and communication technology, the study highlighted the need for various support measures such as government technological support and venture certification system support for institutes with an entrepreneurial spirit aiming to introduce innovative technologies such as AI technology based on large language models and AR/VR-applied metaverse environments. This study is expected to help improve the management performance of private institutes by specifically suggesting items and methods for improvement and management in the educational field.
In this study, we investigated the effect of offline banking trust on smart banking trust. As influencing factors of smart banking trust, this study compared offline banking trust, smart banking's system quality, and information quality. For the empirical study, 186 questionnaire data were collected from smart banking users and the data were analyzed using Smart-PLS 2.0. As results, it was verified that there is trust transfer in FinTech service, by the significant effect of offline banking trust on smart banking trust. And it was proved that the effect of offline banking trust on smart banking trust is lower than that of smart banking itself. The contribution of this study can be seen in both academic and industrial aspects. First, it is the contribution of the academic aspect. Previous studies on banking were focused on either offline banking or smart banking. But this study, focus on the relationship between offline banking and online banking, proved that offline banking trust affects smart banking trust. Next, it is the industrial contribution. This study showed that offline banking characteristics of traditional commercial banks affect the trust of emerging smart banking service. This means that the emerging FinTech companies are not advantageous in the competition of trust building compared to traditional commercial banks. Unlike traditional commercial banks, the emerging FinTech is innovating the convenience of customers by arming them with new technologies such as mobile Internet, social network, cloud technology, and big data. However, these FinTech strengths alone can not guarantee sufficient trust needed for financial transactions, because banking customers do not change a habit or an inertia that they already have during using traditional banks. Therefore, emerging FinTech companies should strive to create destructive value that reflects the connection with various Internet services and the strength of online interaction such as social services, which have an advantage over customer contacts. And emerging FinTech companies should strive to build service trust, focused on young people with low resistance to new services.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.