• Title/Summary/Keyword: 모바일 헬스케어

Search Result 183, Processing Time 0.022 seconds

Global Convergence for Healthcare ICT Services (헬스케어 ICT 서비스의 글로벌 컨버전스)

  • Won, Dal Soo;Lee, Sang San;Jung, Yong Gyu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.2 no.2
    • /
    • pp.45-49
    • /
    • 2016
  • It may be summarized to four kinds of innovation through global convergence, and the convergence of adjacent areas according to mega-trends in medical services market and actively introduced ICT technologies, public and private partnership. Health care is no longer a local industry, it is becoming Global Convergence. In the case of developed countries, it is increased to income levels, the development of new medical technologies, while the increase in specialized medical services and need of aging population. It increases migration of foreign medical personnel, geographical proximity and choice of the best medical technology, regardless of the cost. The increasing demand for high quality yet relatively low foreign prices of medical services. Hospitals are especially spread of international certification such as the US JCI standards. Hospital exports are being evaluated and opened the way for the export industrialization as ICT convergence hospital that can be exported to the fusion-related technologies more efficiently. Current local hospital has already reached saturation, globalization of Korean hospital is being the time necessary. Thus, unlike a strategy for each country, as well as technology transfer it is also possible, such as total exports provided the building, medical equipment procurement, local medical personnel (doctors and nurses) selection and training, PR and marketing. In the current medical law and need to be revised prospectively maintained for publicity and abroad, there is a need for further legal dragons and actively support a more flexible policy on the application of national law overseas medical services.

Implementation of Dynamic Situation Authentication System for Accessing Medical Information (의료정보 접근을 위한 동적상황인증시스템의 구현)

  • Ham, Gyu-Sung;Seo, Own-jeong;Jung, Hoill;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.31-40
    • /
    • 2018
  • With the development of IT technology recently, medical information systems are being constructed in an integrated u-health environment through cloud services, IoT technologies, and mobile applications. These kinds of medical information systems should provide the medical staff with authorities to access patients' medical information for emergency status treatments or therapeutic purposes. Therefore, in the medical information systems, the reliable and prompt authentication processes are necessary to access the biometric information and the medical information of the patients in charge of the medical staff. However, medical information systems are accessing with simple and static user authentication mechanism using only medical ID / PWD in the present system environment. For this reason, in this paper, we suggest a dynamic situation authentication mechanism that provides transparency of medical information access including various authentication factors considering patient's emergency status condition and dynamic situation authentication system supporting it. Our dynamic Situation Authentication is a combination of user authentication and mobile device authentication, which includes various authentication factor attributes such as emergency status, role of medical staff, their working hours, and their working positions and so forth. We designed and implemented a dynamic situation authentication system including emergency status decision, dynamic situation authentication, and authentication support DB construction. Finally, in order to verify the serviceability of the suggested dynamic situation authentication system, the medical staffs download the mobile application from the medical information server to the medical staff's own mobile device together with the dynamic situation authentication process and the permission to access medical information to the patient and showed access to medical information.

Development of 2.4GHz ISM Band Wireless Communication Platform based on Embedded Linux (임베디드 리눅스 기반의 2.4GHz ISM 밴드 무선 통신 플랫폼 개발)

  • Ohm, Woo-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.175-181
    • /
    • 2015
  • In this paper, we develop a 2.4GHz ISM band wireless communication platform prototype based on embedded linux which support can be u-Hospital service. The developed system is available connecting between ARM920T processor board and FPGA board and linking IEEE 802.11b PHY board, AD/DA(10Bit) and RF(2.4GHz) board for wireless access. It is also can be utilized for the embedded system design with IEEE 802.11b/g Access Point(Option: IEEE 802.11a/b/g) test due to the Embedded Linux. Also, the developed system is possible to test and verify the radio access technology, Modem(OFDM etc) and IP(Intellectual Property) circuit. And make the most use of the system, we search for a expansion to that home and mobile healthcare, wellness service application.

Design of Integrated medical sensor node and Mobile Vital Healthcare diagnosis System (통합형 메디컬센서노드와 모바일 환자생체정보 관리 시스템 설계)

  • Lee, Seung-chul;Gwon, Tae-Ha;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.302-305
    • /
    • 2009
  • The Multiple vital signs management system using Mobil phone is designed with Wireless sensor network and CDMA which are integrated to create a wide coverage to support various environments like inside and outside of hospital. Health signals from medical sensor node are analysed in cell phone first for real time signal analyses and then the abnormal vital signs are sent and save to hospital server for detail signal processing and doctor's diagnosis. We developed integrated vital access processor of sensor node to use selective medical interface(ECG, Blood pressure and sugar module) and control the self-organizing network of sensor nodes in a wireless sensor network. chronic disease such as heart disease and diabetes is able to check using graph view in mobile phone.

  • PDF

Privacy-Preserving Method to Collect Health Data from Smartband

  • Moon, Su-Mee;Kim, Jong-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.113-121
    • /
    • 2020
  • With the rapid development of information and communication technology (ICT), various sensors are being embedded in wearable devices. Consequently, these devices can continuously collect data including health data from individuals. The collected health data can be used not only for healthcare services but also for analyzing an individual's lifestyle by combining with other external data. This helps in making an individual's life more convenient and healthier. However, collecting health data may lead to privacy issues since the data is personal, and can reveal sensitive insights about the individual. Thus, in this paper, we present a method to collect an individual's health data from a smart band in a privacy-preserving manner. We leverage the local differential privacy to achieve our goal. Additionally, we propose a way to find feature points from health data. This allows for an effective trade-off between the degree of privacy and accuracy. We carry out experiments to demonstrate the effectiveness of our proposed approach and the results show that, with the proposed method, the error rate can be reduced upto 77%.

Medical Service Based on AR and VR (가상 증강현실 기반의 의료서비스)

  • Yeon, YunMo;Woo, SungHee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.803-806
    • /
    • 2016
  • 'Pokemon Go',which is game program, provides a clue to solve the problem of healthcare in the sense of leading changes in behavior of the users. 'Pokemon Go'is a spin-off of the $Pok{\acute{e}}mon$ game series and uses Augmented Reality(AR) technology. AR, which can be said to complement the real world, has been used in many fields such as medical applications, broadcasting, manufacturing, the mobile sector as a wide range of technologies. In particular, the medical field as area of the active application from the start of AR, provides a great help in medical fields, that is accurate medical diagnosis and prevention of unnecessary dissection by synthesizing the patient information and the image of actual patient on three-dimensional data of the sensor such as MRI or ultrasonic wave. In this study, we analyze the VR technology trends, application examples, and the future of VR and AR based medical services in healthcare.

  • PDF

Design of an Efficient Electrocardiogram Measurement System based on Bluetooth Network using Sensor Network (Bluetooth기반의 센서네트워크를 이용한 효율적인 심전도 측정시스템 설계)

  • Kim, Sun-Jae;Oh, Won-Wook;Lee, Chang-Soo;Min, Byoung-Muk;Oh, Hae-Seok
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.699-706
    • /
    • 2009
  • The convergence tendency accelerates the realization of the ubiquitous healthcare (u-Healthcare) between the technology including the power generaation and IT-BT-NT of the ubiquitous computing technology. By rapidly analyzing a large amount of collected from the sensor network with processing and delivering to the medical team an u-Healthcare can provide a patient for an inappropriate regardless of the time and place. As to the existing u-Healthcare, since the sensor node all transmitted collected data by using with the Zigbee protocol the processing burden of the base node was big and there was many communication frequency of the sensor node. In this paper, the u-Healthcare system in which it can efficiently apply to mobile apparatuses it provided the transfer rate in which it is superior to the bio-signal delivery where there are the life and direct relation which by using the Bluetooth instead of the Zigbee protocol and in which it is variously used in the ubiquitous environment was designed. Moreover, by applying the EEF(Embedded Event Filtering) technique in which data in which it includes in the event defined in advance selected and it transmits with the base node, the communication frequency and were reduced. We confirmed to be the system in which it is efficient through the simulation result than the existing Electrocardiogram Measurement system.

Implementation and Evaluation of ECG Authentication System Using Wearable Device (웨어러블 디바이스를 활용한 ECG 인증 시스템 구현 및 평가)

  • Heo, Jae-Wook;Jin, Sun-Woo;Jun, Moon-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.1-6
    • /
    • 2019
  • As mobile technologies such as Internet of Things (IoT)-based smart homes and financial technologies (FinTech) are developed, authentication by smart devices is used everywhere. As a result, presence-based biometric authentication using smart devices has become a new mainstream in knowledge-based authentication methods like the existing passwords. The electrocardiogram (ECG) is less prone to forgery, and high-level personal identification is its unique feature from among various biometric authentication methods, such as the pulse, fingerprints, the face, and the iris. Biometric authentication using an ECG is receiving a great deal of attention due to its uses in healthcare and FinTech. In this study, we implemented an ECG authentication system that allows users to easily measure and authenticate their ECG waveforms using a miniaturized wearable device, rather than a large and expensive measurement device. The implemented ECG authentication system identifies ECG features through P-Q-R-S-T feature point identification, and was user-certified under the proposed authentication protocols. Finally, assessment of measurements in a majority of adult males showed a relatively low false acceptance rate of 1.73%, and a low false rejection rate of 4.14%, in a stable normal state. In a high-activity state, the false acceptance rate was 13.72%, and the false rejection rate was 21.68%. In a high-heart rate state, the false acceptance rate was 10.48%, and the false rejection rate was 11.21%.

Design of a Personal-Led Health Data Management Framework Based on Distributed Ledger (분산 원장 기반의 개인 주도적 건강 데이터 관리 프레임워크 설계)

  • Moon, Junho;Kim, Dongsoo
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.3
    • /
    • pp.73-86
    • /
    • 2019
  • After the 4th industrial revolution, the healthcare industry is striving to find new business models through new technologies. Among them, blockchain technology is one of the technologies that have great interest in the healthcare industry. Most providers of personal health record systems have difficulty in securing marketability due to various problems. Therefore, they try to integrate blockchain technology to develop new systems and gain marketability. However, blockchain has limitations in solving the problems of the personal health record system. In this study, we have designed a personalized health data management framework that enables information subjects to acquire full ownership rights of individual's health data, based on distributed ledger technology. For the framework design, we refer to the structure of R3 Corda. It was designed with a different network structure than the existing blockchain systems so that the node can be operated on the personal user's mobile device. This allows information subjects to directly store and manage their own data and share data with authorized network members. Through the proposed system, the information utilization of the healthcare industry can be improved and the public health promotion and medical technology development can be realized.

The Effects of a Mobile Personal Health Records (PHR) Application on Consumer Health Behavior (모바일 개인건강기록(Personal Health Records: PHR) 어플리케이션의 이용이 소비자 건강행태에 미치는 영향)

  • Yi, Yong Jeong
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.4
    • /
    • pp.7-26
    • /
    • 2016
  • The present study aimed at investigating the strengths and weaknesses of a mobile personal health record (PHR) application and identifying its impacts on consumer health information behavior. For the study, twenty-seven college students used a PHR application for three months, based on which the study conducted paper-based interviews with them. The results of content analysis highlighted the benefits of the PHR such as supporting preventive healthcare and motivating and providing specific guidelines for healthy lifestyles by utilizing visual interface design, sharing the data with family and assisting caregivers to manage patients' healthcare, and above all enhancing the interaction between patients and healthcare professionals. However, the study found the drawbacks of the PHR such as a lack of data entry for strength training and the incompatibility with other healthcare applications. The participants were motivated to change their health behaviors in ways such as getting rid of sleep disorders, avoiding alcohol and smoking tobacco, and losing weight, and changing eating habits. Some consumers improved self-efficacy by changing their health behaviors, while the PHR provided emotional supports to the consumers who wanted to improve their health. The present study has an academic significance because the study of PHR is a burgeoning area in Korea. The study provides insights for promoting health and medical information services to cope with the paradigm shift of healthcare fields.