• Title/Summary/Keyword: 모바일 어플리케이션 시스템

Search Result 310, Processing Time 0.027 seconds

A Benchmark of Micro Parallel Computing Technology for Real-time Control in Smart Farm (MPICH vs OpenMP) (제목을스마트 시설환경 실시간 제어를 위한 마이크로 병렬 컴퓨팅 기술 분석)

  • Min, Jae-Ki;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.161-161
    • /
    • 2017
  • 스마트 시설환경의 제어 요소는 난방기, 창 개폐, 수분/양액 밸브 개폐, 환풍기, 제습기 등 직접적으로 시설환경의 조절에 관여하는 인자와 정보 교환을 위한 통신, 사용자 인터페이스 등 간접적으로 제어에 관련된 요소들이 복합적으로 존재한다. PID 제어와 같이 하는 수학적 논리를 바탕으로 한 제어와 전문 관리자의 지식을 기반으로 한 비선형 학습 모델에 의한 제어 등이 공존할 수 있다. 이러한 다양한 요소들을 복합적으로 연동시키기 위해선 기존의 시퀀스 기반 제어 방식에는 한계가 있을 수 있다. 관행의 방식과 같이 시계열 상에서 획득한 충분한 데이터를 이용하여 제어의 양과 시점을 결정하는 방식은 예외 상황에 충분히 대처하기 어려운 단점이 있을 수 있다. 이러한 예외 상황은 자연적인 조건의 변화에 따라 불가피하게 발생하는 경우와 시스템의 오류에 기인하는 경우로 나뉠 수 있다. 본 연구에서는 실시간으로 변하는 시설환경 내의 다양한 환경요소를 실시간으로 분석하고 상응하는 제어를 수행하여 수학적이며 예측 가능한 논리에 의해 준비된 제어시스템을 보완할 방법을 연구하였다. 과거의 고성능 컴퓨팅(HPC; High Performance Computing)은 다수의 컴퓨터를 고속 네트워크로 연동하여 집적적으로 연산능력을 향상시킨 기술로 비용과 규모의 측면에서 많은 투자를 필요로 하는 첨단 고급 기술이었다. 핸드폰과 모바일 장비의 발달로 인해 소형 마이크로프로세서가 발달하여 근래 2 Ghz의 클럭 속도에 이르는 어플리케이션 프로세서(AP: Application Processor)가 등장하기도 하였다. 상대적으로 낮은 성능에도 불구하고 저전력 소모와 플랫폼의 소형화를 장점으로 한 AP를 시설환경의 실시간 제어에 응용하기 위한 방안을 연구하였다. CPU의 클럭, 메모리의 양, 코어의 수량을 다음과 같이 달리한 3가지 시스템을 비교하여 AP를 이용한 마이크로 클러스터링 기술의 성능을 비교하였다.1) 1.5 Ghz, 8 Processors, 32 Cores, 1GByte/Processor, 32Bit Linux(ARMv71). 2) 2.0 Ghz, 4 Processors, 32 Cores, 2GByte/Processor, 32Bit Linux(ARMv71). 3) 1.5 Ghz, 8 Processors, 32 Cores, 2GByte/Processor, 64Bit Linux(Arch64). 병렬 컴퓨팅을 위한 개발 라이브러리로 MPICH(www.mpich.org)와 Open-MP(www.openmp.org)를 이용하였다. 2,500,000,000에 이르는 정수 중 소수를 구하는 연산에 소요된 시간은 1)17초, 2)13초, 3)3초 이었으며, $12800{\times}12800$ 크기의 행렬에 대한 2차원 FFT 연산 소요시간은 각각 1)10초, 2)8초, 3)2초 이었다. 3번 경우는 클럭속도가 3Gh에 이르는 상용 데스크탑의 연산 속도보다 빠르다고 평가할 수 있다. 라이브러리의 따른 결과는 근사적으로 동일하였다. 선행 연구에서 획득한 3차원 계측 데이터를 1초 단위로 3차원 선형 보간법을 수행한 경우 코어의 수를 4개 이하로 한 경우 근소한 차이로 동일한 결과를 보였으나, 코어의 수를 8개 이상으로 한 경우 앞선 결과와 유사한 경향을 보였다. 현장 보급 가능성, 구축비용 및 전력 소모 등을 종합적으로 고려한 AP 활용 마이크로 클러스터링 기술을 지속적으로 연구할 것이다.

  • PDF

A Case of IT System Development for Engineering Education of Low-carbon & Green-growth (저탄소 녹색성장 공학 교육을 위한 IT 시스템 개발 사례)

  • Kang, Minshik
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.2
    • /
    • pp.27-33
    • /
    • 2011
  • Recently, the most important paradigm is to prepare future and to protect the environment through the carbon savings occurs in everyday life and whole industry. For the success of this new paradigm, Korean government encourages the green certification and the development of green technologies and green growth as one of the important policies are adopted and implemented. Public agencies and companies establish the plans about the carbon savings and implement a lot of research has moved on using IT technology. There are some attempts in Korea to use as an electronic document instead of the use of paper document using these green IT and mobile devices. In this paper, the waiting sequence system using mobile phone is proposed as an example of practical engineering education for 'Low carbon, Green growth'.

  • PDF

Offline Friend Recommendation using Mobile Context and Online Friend Network Information based on Tensor Factorization (모바일 상황정보와 온라인 친구네트워크정보 기반 텐서 분해를 통한 오프라인 친구 추천 기법)

  • Kim, Kyungmin;Kim, Taehun;Hyun, Soon. J
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.8
    • /
    • pp.375-380
    • /
    • 2016
  • The proliferation of online social networking services (OSNSs) and smartphones has enabled people to easily make friends with a large number of users in the online communities, and interact with each other. This leads to an increase in the usage rate of OSNSs. However, individuals who have immersed into their digital lives, prioritizing the virtual world against the real one, become more and more isolated in the physical world. Thus, their socialization processes that are undertaken only through lots of face-to-face interactions and trial-and-errors are apt to be neglected via 'Add Friend' kind of functions in OSNSs. In this paper, we present a friend recommendation system based on the on/off-line contextual information for the OSNS users to have more serendipitous offline interactions. In order to accomplish this, we modeled both offline information (i.e., place visit history) collected from a user's smartphone on a 3D tensor, and online social data (i.e., friend relationships) from Facebook on a matrix. We then recommended like-minded people and encouraged their offline interactions. We evaluated the users' satisfaction based on a real-world dataset collected from 43 users (12 on-campus users and 31 users randomly selected from Facebook friends of on-campus users).

Construction of Dyeing Condition System for Lithospermum erythrorhizon by Applying Natural Dye and Mordants (천연 염료와 매염제의 응용에 의한 Lithospermum erythrorhizon의 염색 조건 시스템 구축)

  • Jung, Suk-Yul
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.33-38
    • /
    • 2020
  • It was reported that a mobile application was designed to easily provide natural dyeing information such as natural dye related resources, colors and dyed fabrics in 2007. Since studies on the linkage, application, etc. between natural dye dyeing and IoT are still lacking, diversity of information on the change of dyeing pattern by natural dye dyeing is required. In this study, it was to construct dyeing information by natural dyes, e.g., Lithospermum erythrorhizon, on silk, which has been traditionally used as many fibers in Korea. The extraction of the dye from L. erythrorhizon was carried out under pH4. The dried root of L. erythrorhizon showed dark brownish purple. Silk fabric by a without a mordant typically showed a purple dyed pattern. In the staining by sodium tartrate plus citric acid, silk fabric was stained clear brown. Interestingly, the mordant of iron (II) sulfate, the silk fabric was dyed in a light gray color rather than black. When the mordant of aluminum potassium sulfate was treated with L. erythrorhizon-extracted dye, the results were almost the same as when the mordant was not treated. When the degree of dyeing was evaluated numerically, the treatment of the mordant of potassium dichromate was about 50% darker, and the dyeing by iron (II) sulfate was about 75% darker. These results will be helpful in the study of applying various dye colors using L. erythrorhizon, and it will provide information on dyeing controller and database system construction by dyeing parameters such as dyeing degree, pH concentration, and chromaticity change.

A Customized Healthy Menu Recommendation Method Using Content-Based and Food Substitution Table (내용 기반 및 식품 교환 표를 이용한 맞춤형 건강식단 추천 기법)

  • Oh, Yoori;Kim, Yoonhee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.3
    • /
    • pp.161-166
    • /
    • 2017
  • In recent times, many people have problems of nutritional imbalance; lack or surplus intake of a specific nutrient despite the variety of available foods. Accordingly, the interest in health and diet issues has increased leading to the emergence of various mobile applications. However, most mobile applications only record the user's diet history and show simple statistics and usually provide only general information for healthy diet. It is necessary for users interested in healthy eating to be provided recommendation services reflecting their food interest and providing customized information. Hence, we propose a menu recommendation method which includes calculating the recommended calorie amount based on the user's physical and activity profile to assign to each food group a substitution unit. In addition, our method also analyzes the user's food preferences using food intake history. Thus it satisfies recommended intake unit for each food group by exchanging the user's preferred foods. Also, the excellence of our proposed algorithm is demonstrated through the calculation of precision, recall, health index and the harmonic average of the 3 aforementioned measures. We compare it to another method which considers user's interest and recommended substitution unit. The proposed method provides menu recommendation reflecting interest and personalized health status by which user can improve and maintain a healthy dietary habit.

Proposal of a Step-by-Step Optimized Campus Power Forecast Model using CNN-LSTM Deep Learning (CNN-LSTM 딥러닝 기반 캠퍼스 전력 예측 모델 최적화 단계 제시)

  • Kim, Yein;Lee, Seeun;Kwon, Youngsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.8-15
    • /
    • 2020
  • A forecasting method using deep learning does not have consistent results due to the differences in the characteristics of the dataset, even though they have the same forecasting models and parameters. For example, the forecasting model X optimized with dataset A would not produce the optimized result with another dataset B. The forecasting model with the characteristics of the dataset needs to be optimized to increase the accuracy of the forecasting model. Therefore, this paper proposes novel optimization steps for outlier removal, dataset classification, and a CNN-LSTM-based hyperparameter tuning process to forecast the daily power usage of a university campus based on the hourly interval. The proposing model produces high forecasting accuracy with a 2% of MAPE with a single power input variable. The proposing model can be used in EMS to suggest improved strategies to users and consequently to improve the power efficiency.

A Basic Study on the Development of a Mobile Data Sampling Method based on ESM to Examine Child-care Teachers' Emotional Experience (ESM기반 보육교사 정서 연구를 위한 데이터 표집기술 개발에 관한 기초연구)

  • Kim, Soojung;Lee, Yungil
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.199-206
    • /
    • 2017
  • The experience sampling method (ESM) is an innovative research method to study the immediate real emotional experience experienced in real life through the immediate reaction of research participants. ESM, which has received significant attention in recent, is considered as the research method particularly for child care teachers' emotions and happiness. This method has been shown to be able to overcome the limitations in current research methods, based on teachers' recall or surveys, in assessing child care teachers' emotional states or stress levels. Despite the expectation that the need for further research on the increased stress and negative emotional experiences of child care teachers and its appropriateness as the alternative research method to study child care teachers' immediate emotional experience, ESM has deficiencies in that research participants need to have their pencil-and-paper survey packages on hand whenever their electronic beepers randomly beep. Furthermore, ESM demands much more researcher energy and efforts to handle the voluminous data collected from each participant in effectively creating a database. In this paper, in order to apply ESM successfully to the study of child care teachers' emotional experience, we aim to develop a software program that uses mobile communication technology. Given that traditional types of data collection methods in social science research can prove too burdensome to encourage participation in surveys in the first place or ensure the return of completed surveys, the present study adopts a convergent research approach to develop a software program that is able to obtain ESM participants' answers immediately on their personal smart phones. This study deals with system construction and prototyping for software development as a basic research and evaluates the research results through indepth interview with experts.

Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies (4차 산업혁명 기술에 기반한 농업 기상 정보 시스템의 요구도 분석)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Kang, DaeGyoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.175-186
    • /
    • 2019
  • Efforts have been made to introduce the climate smart agriculture (CSA) for adaptation to future climate conditions, which would require collection and management of site specific meteorological data. The objectives of this study were to identify requirements for construction of agricultural meteorology information service system (AMISS) using technologies that lead to the fourth industrial revolution, e.g., internet of things (IoT), artificial intelligence, and cloud computing. The IoT sensors that require low cost and low operating current would be useful to organize wireless sensor network (WSN) for collection and analysis of weather measurement data, which would help assessment of productivity for an agricultural ecosystem. It would be recommended to extend the spatial extent of the WSN to a rural community, which would benefit a greater number of farms. It is preferred to create the big data for agricultural meteorology in order to produce and evaluate the site specific data in rural areas. The digital climate map can be improved using artificial intelligence such as deep neural networks. Furthermore, cloud computing and fog computing would help reduce costs and enhance the user experience of the AMISS. In addition, it would be advantageous to combine environmental data and farm management data, e.g., price data for the produce of interest. It would also be needed to develop a mobile application whose user interface could meet the needs of stakeholders. These fourth industrial revolution technologies would facilitate the development of the AMISS and wide application of the CSA.

Clustering Method based on Genre Interest for Cold-Start Problem in Movie Recommendation (영화 추천 시스템의 초기 사용자 문제를 위한 장르 선호 기반의 클러스터링 기법)

  • You, Tithrottanak;Rosli, Ahmad Nurzid;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.57-77
    • /
    • 2013
  • Social media has become one of the most popular media in web and mobile application. In 2011, social networks and blogs are still the top destination of online users, according to a study from Nielsen Company. In their studies, nearly 4 in 5active users visit social network and blog. Social Networks and Blogs sites rule Americans' Internet time, accounting to 23 percent of time spent online. Facebook is the main social network that the U.S internet users spend time more than the other social network services such as Yahoo, Google, AOL Media Network, Twitter, Linked In and so on. In recent trend, most of the companies promote their products in the Facebook by creating the "Facebook Page" that refers to specific product. The "Like" option allows user to subscribed and received updates their interested on from the page. The film makers which produce a lot of films around the world also take part to market and promote their films by exploiting the advantages of using the "Facebook Page". In addition, a great number of streaming service providers allows users to subscribe their service to watch and enjoy movies and TV program. They can instantly watch movies and TV program over the internet to PCs, Macs and TVs. Netflix alone as the world's leading subscription service have more than 30 million streaming members in the United States, Latin America, the United Kingdom and the Nordics. As the matter of facts, a million of movies and TV program with different of genres are offered to the subscriber. In contrast, users need spend a lot time to find the right movies which are related to their interest genre. Recent years there are many researchers who have been propose a method to improve prediction the rating or preference that would give the most related items such as books, music or movies to the garget user or the group of users that have the same interest in the particular items. One of the most popular methods to build recommendation system is traditional Collaborative Filtering (CF). The method compute the similarity of the target user and other users, which then are cluster in the same interest on items according which items that users have been rated. The method then predicts other items from the same group of users to recommend to a group of users. Moreover, There are many items that need to study for suggesting to users such as books, music, movies, news, videos and so on. However, in this paper we only focus on movie as item to recommend to users. In addition, there are many challenges for CF task. Firstly, the "sparsity problem"; it occurs when user information preference is not enough. The recommendation accuracies result is lower compared to the neighbor who composed with a large amount of ratings. The second problem is "cold-start problem"; it occurs whenever new users or items are added into the system, which each has norating or a few rating. For instance, no personalized predictions can be made for a new user without any ratings on the record. In this research we propose a clustering method according to the users' genre interest extracted from social network service (SNS) and user's movies rating information system to solve the "cold-start problem." Our proposed method will clusters the target user together with the other users by combining the user genre interest and the rating information. It is important to realize a huge amount of interesting and useful user's information from Facebook Graph, we can extract information from the "Facebook Page" which "Like" by them. Moreover, we use the Internet Movie Database(IMDb) as the main dataset. The IMDbis online databases that consist of a large amount of information related to movies, TV programs and including actors. This dataset not only used to provide movie information in our Movie Rating Systems, but also as resources to provide movie genre information which extracted from the "Facebook Page". Formerly, the user must login with their Facebook account to login to the Movie Rating System, at the same time our system will collect the genre interest from the "Facebook Page". We conduct many experiments with other methods to see how our method performs and we also compare to the other methods. First, we compared our proposed method in the case of the normal recommendation to see how our system improves the recommendation result. Then we experiment method in case of cold-start problem. Our experiment show that our method is outperform than the other methods. In these two cases of our experimentation, we see that our proposed method produces better result in case both cases.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.