• Title/Summary/Keyword: 모바일 데이터 서비스

Search Result 1,110, Processing Time 0.028 seconds

Clustering Method based on Genre Interest for Cold-Start Problem in Movie Recommendation (영화 추천 시스템의 초기 사용자 문제를 위한 장르 선호 기반의 클러스터링 기법)

  • You, Tithrottanak;Rosli, Ahmad Nurzid;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.57-77
    • /
    • 2013
  • Social media has become one of the most popular media in web and mobile application. In 2011, social networks and blogs are still the top destination of online users, according to a study from Nielsen Company. In their studies, nearly 4 in 5active users visit social network and blog. Social Networks and Blogs sites rule Americans' Internet time, accounting to 23 percent of time spent online. Facebook is the main social network that the U.S internet users spend time more than the other social network services such as Yahoo, Google, AOL Media Network, Twitter, Linked In and so on. In recent trend, most of the companies promote their products in the Facebook by creating the "Facebook Page" that refers to specific product. The "Like" option allows user to subscribed and received updates their interested on from the page. The film makers which produce a lot of films around the world also take part to market and promote their films by exploiting the advantages of using the "Facebook Page". In addition, a great number of streaming service providers allows users to subscribe their service to watch and enjoy movies and TV program. They can instantly watch movies and TV program over the internet to PCs, Macs and TVs. Netflix alone as the world's leading subscription service have more than 30 million streaming members in the United States, Latin America, the United Kingdom and the Nordics. As the matter of facts, a million of movies and TV program with different of genres are offered to the subscriber. In contrast, users need spend a lot time to find the right movies which are related to their interest genre. Recent years there are many researchers who have been propose a method to improve prediction the rating or preference that would give the most related items such as books, music or movies to the garget user or the group of users that have the same interest in the particular items. One of the most popular methods to build recommendation system is traditional Collaborative Filtering (CF). The method compute the similarity of the target user and other users, which then are cluster in the same interest on items according which items that users have been rated. The method then predicts other items from the same group of users to recommend to a group of users. Moreover, There are many items that need to study for suggesting to users such as books, music, movies, news, videos and so on. However, in this paper we only focus on movie as item to recommend to users. In addition, there are many challenges for CF task. Firstly, the "sparsity problem"; it occurs when user information preference is not enough. The recommendation accuracies result is lower compared to the neighbor who composed with a large amount of ratings. The second problem is "cold-start problem"; it occurs whenever new users or items are added into the system, which each has norating or a few rating. For instance, no personalized predictions can be made for a new user without any ratings on the record. In this research we propose a clustering method according to the users' genre interest extracted from social network service (SNS) and user's movies rating information system to solve the "cold-start problem." Our proposed method will clusters the target user together with the other users by combining the user genre interest and the rating information. It is important to realize a huge amount of interesting and useful user's information from Facebook Graph, we can extract information from the "Facebook Page" which "Like" by them. Moreover, we use the Internet Movie Database(IMDb) as the main dataset. The IMDbis online databases that consist of a large amount of information related to movies, TV programs and including actors. This dataset not only used to provide movie information in our Movie Rating Systems, but also as resources to provide movie genre information which extracted from the "Facebook Page". Formerly, the user must login with their Facebook account to login to the Movie Rating System, at the same time our system will collect the genre interest from the "Facebook Page". We conduct many experiments with other methods to see how our method performs and we also compare to the other methods. First, we compared our proposed method in the case of the normal recommendation to see how our system improves the recommendation result. Then we experiment method in case of cold-start problem. Our experiment show that our method is outperform than the other methods. In these two cases of our experimentation, we see that our proposed method produces better result in case both cases.

Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies (4차 산업혁명 기술에 기반한 농업 기상 정보 시스템의 요구도 분석)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Kang, DaeGyoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.175-186
    • /
    • 2019
  • Efforts have been made to introduce the climate smart agriculture (CSA) for adaptation to future climate conditions, which would require collection and management of site specific meteorological data. The objectives of this study were to identify requirements for construction of agricultural meteorology information service system (AMISS) using technologies that lead to the fourth industrial revolution, e.g., internet of things (IoT), artificial intelligence, and cloud computing. The IoT sensors that require low cost and low operating current would be useful to organize wireless sensor network (WSN) for collection and analysis of weather measurement data, which would help assessment of productivity for an agricultural ecosystem. It would be recommended to extend the spatial extent of the WSN to a rural community, which would benefit a greater number of farms. It is preferred to create the big data for agricultural meteorology in order to produce and evaluate the site specific data in rural areas. The digital climate map can be improved using artificial intelligence such as deep neural networks. Furthermore, cloud computing and fog computing would help reduce costs and enhance the user experience of the AMISS. In addition, it would be advantageous to combine environmental data and farm management data, e.g., price data for the produce of interest. It would also be needed to develop a mobile application whose user interface could meet the needs of stakeholders. These fourth industrial revolution technologies would facilitate the development of the AMISS and wide application of the CSA.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.

A Trend of Artificial Intelligence in the Healthcare (헬스케어산업에서의 인공지능 활용 동향)

  • Lee, Sae Bom;Song, Jaemin;Park, Arum
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.5
    • /
    • pp.448-456
    • /
    • 2020
  • In the era of the Fourth Industrial Revolution, how well the explosive information and data are handled and used is recognized as a problem directly related to the competitiveness of the industry. In particular, the introduction of artificial intelligence technology in the medical field can be said to have a great social impact on its use, and this research was conducted to understand the trends of artificial intelligence according to the range of use case. In this study, the application of artificial intelligence in the healthcare field is divided into four scopes, (1) hospital solutions, (2) personal health care, (3) insurance, and (4) new drug development. Based on various cases and trends in artificial intelligence technology, this study tried to give directions on how to develop artificial intelligence in Korea. In this study, we wanted to find out the use cases of artificial intelligence in various areas of healthcare industry and describe the latest issues in healthcare to help the overall medical industry. The development of artificial intelligence-based medical systems has made it easier to manage the chronic patients, increased the accuracy of cancer or disease diagnosis, and helped developing new drugs faster and more efficiently. Through this study, the medical industry we wanted to give a direction to the future development of artificial intelligence in Korea.

Study on Basic Elements for Smart Content through the Market Status-quo (스마트콘텐츠 현황분석을 통한 기본요소 추출)

  • Kim, Gyoung Sun;Park, Joo Young;Kim, Yi Yeon
    • Korea Science and Art Forum
    • /
    • v.21
    • /
    • pp.31-43
    • /
    • 2015
  • Information and Communications Technology (ICT) is one of the technologies which represent the core value of the creative economy. It has served as a vehicle connecting the existing industry and corporate infrastructure, developing existing products and services and creating new products and services. In addition to the ICT, new devices including big data, mobile gadgets and wearable products are gaining a great attention sending an expectation for a new market-pioneering. Further, Internet of Things (IoT) is helping solidify the ICT-based social development connecting human-to-human, human-to-things and things-to-things. This means that the manufacturing-based hardware development needs to be achieved simultaneously with software development through convergence. The essential element the convergence between hardware and software is OS, for which world's leading companies such as Google and Apple have launched an intense development recognizing the importance of software. Against this backdrop, the status-quo of the software market has been examined for the study of the present report (Korea Evaluation Institute of Industrial Technology: Professional Design Technology Development Project). As a result, the software platform-based Google's android and Apple's iOS are dominant in the global market and late comers are trying to enter the market through various pathways by releasing web-based OS and similar OS to provide a new paradigm to the market. The present study is aimed at finding the way to utilize a smart content by which anyone can be a developer based on OS responding to such as social change, newly defining a smart content to be universally utilized and analyzing the market to deal with a rapid market change. The study method, scope and details are as follows: Literature investigation, Analysis on the app market according to a smart classification system, Trend analysis on the current content market, Identification of five common trends through comparison among the universal definition of smart content, the status-quo of application represented in the app market and content market situation. In conclusion, the smart content market is independent but is expected to develop in the form of a single organic body being connected each other. Therefore, the further classification system and development focus should be made in a way to see the area from multiple perspectives including a social point of view in terms of the existing technology, culture, business and consumers.

Factors Influencing Digital Native's Acceptance and Use of 4th Industrial Revolution Technology : Focusing on FinTech and AR (Augmented Reality) Technology (Digital Native의 4차산업혁명 기술수용 영향 요인: FinTech 및 AR(증강현실) 기술을 중심으로)

  • Chung, Byoung-Gyu
    • Journal of Venture Innovation
    • /
    • v.4 no.2
    • /
    • pp.77-95
    • /
    • 2021
  • In the midst of the progress of the 4th industrial revolution, the Corona19 Pandemic was forming giant double wave. Companies riding this wave can win, but companies that do not will fall into the wave and struggle. In connection with the 4th industrial revolution, various technologies are emerging and commercialized. At this point, consumers, especially digital natives, who have been with digital since birth, tried to find out what factors affect the intention to use these technologies and which factors have the most important influence. For this purpose, data were collected through a survey on factors affecting the intention to use FinTech technology and AR technology for 150 digital natives in their 20s. Based on this, statistical analysis was conducted and the following results were obtained. As a result of the overall analysis regardless of the type of technology, it was found that performance expectancy, effort expectancy, social influence, and habits have a positive (+) effect on digital natives' intention to use the 4th industrial technology. On the other hand, a significant influence relationship between the facilitating conditions, hedonic motivation and intention to use the 4th industrial technology was not tested. It was found that the influence was greatly influenced by social influence and habits. In the case of FinTech and AR, which were further subdivided into this study, different aspects were revealed as a result of separate analysis. In the case of FinTech technology that emphasizes utilitarian value, performance expectancy, effort expectancy, social influence, and habits had a positive (+) effect on intention to use. It was found that the influence was greatly influenced by habits and social influence. In the case of AR, which emphasizes the hedonic value, all the variables adopted in this study had a positive (+) effect on the intention to use the technology. It was found that hedonic motivation and social influence had a great influence. Combining the results of the analysis, social influence was found to be an important influence variable regardless of the type of 4th industrial technology. FinTech technologies such as mobile banking, where services are becoming more common, are habits, and in the case of AR, which has not yet been universalized and is provided mainly for entertainment, hedonic motivation was found to be an important factor. This study was able to present academic and practical implications based on the above confirmation of factors affecting digital natives' acceptance and use of the 4th industry technology.

A Customized Healthy Menu Recommendation Method Using Content-Based and Food Substitution Table (내용 기반 및 식품 교환 표를 이용한 맞춤형 건강식단 추천 기법)

  • Oh, Yoori;Kim, Yoonhee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.3
    • /
    • pp.161-166
    • /
    • 2017
  • In recent times, many people have problems of nutritional imbalance; lack or surplus intake of a specific nutrient despite the variety of available foods. Accordingly, the interest in health and diet issues has increased leading to the emergence of various mobile applications. However, most mobile applications only record the user's diet history and show simple statistics and usually provide only general information for healthy diet. It is necessary for users interested in healthy eating to be provided recommendation services reflecting their food interest and providing customized information. Hence, we propose a menu recommendation method which includes calculating the recommended calorie amount based on the user's physical and activity profile to assign to each food group a substitution unit. In addition, our method also analyzes the user's food preferences using food intake history. Thus it satisfies recommended intake unit for each food group by exchanging the user's preferred foods. Also, the excellence of our proposed algorithm is demonstrated through the calculation of precision, recall, health index and the harmonic average of the 3 aforementioned measures. We compare it to another method which considers user's interest and recommended substitution unit. The proposed method provides menu recommendation reflecting interest and personalized health status by which user can improve and maintain a healthy dietary habit.

A Comparative Study on Discrimination Issues in Large Language Models (거대언어모델의 차별문제 비교 연구)

  • Wei Li;Kyunghwa Hwang;Jiae Choi;Ohbyung Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.125-144
    • /
    • 2023
  • Recently, the use of Large Language Models (LLMs) such as ChatGPT has been increasing in various fields such as interactive commerce and mobile financial services. However, LMMs, which are mainly created by learning existing documents, can also learn various human biases inherent in documents. Nevertheless, there have been few comparative studies on the aspects of bias and discrimination in LLMs. The purpose of this study is to examine the existence and extent of nine types of discrimination (Age, Disability status, Gender identity, Nationality, Physical appearance, Race ethnicity, Religion, Socio-economic status, Sexual orientation) in LLMs and suggest ways to improve them. For this purpose, we utilized BBQ (Bias Benchmark for QA), a tool for identifying discrimination, to compare three large-scale language models including ChatGPT, GPT-3, and Bing Chat. As a result of the evaluation, a large number of discriminatory responses were observed in the mega-language models, and the patterns differed depending on the mega-language model. In particular, problems were exposed in elder discrimination and disability discrimination, which are not traditional AI ethics issues such as sexism, racism, and economic inequality, and a new perspective on AI ethics was found. Based on the results of the comparison, this paper describes how to improve and develop large-scale language models in the future.

A Study for Factors Influencing the Usage Increase and Decrease of Mobile Data Service: Based on The Two Factor Theory (모바일 데이터 서비스 사용량 증감에 영향을 미치는 요인들에 관한 연구: 이요인 이론(Two Factor Theory)을 바탕으로)

  • Lee, Sang-Hoon;Kim, Il-Kyung;Lee, Ho-Geun;Park, Hyun-Jee
    • Asia pacific journal of information systems
    • /
    • v.17 no.2
    • /
    • pp.97-122
    • /
    • 2007
  • Conventional networking and telecommunications infrastructure characterized by wires, fixed location, and inflexibility is giving way to mobile technologies. Numerous research reports point to the ultimate domination of wireless communication. With the increasing prevalence of advanced cell-phones, various mobile data services (hereafter MDS) are gaining popularity. Although cellular networks were originally introduced for voice communications, statistics indicate that data services are replacing the matured voice service as the growth engine for telecom service providers. For example, SK Telecom, the Korea's largest mobile service provider, reported that 25.6% of revenue and 28.5% of profit came from MDS in 2006 and the share is growing. Statistics also indicate that, in 2006, the average revenue per user (ARPU) for voice didn't change but MDS grew seven percents from the previous year, further highlighting its growth potential. MDS is defined "as an assortment of digital data services that can be accessed using a mobile device over a wide geographic area." A variety of MDS have been deployed, with a few reaching the status of killer applications. Many of them need to access the Internet through the cellular-phone infrastructure. In the past, when the cellular network didn't have acceptable bandwidth for data services, SMS (short messaging service) dominated MDS. Now, Internet-ready, next-generation cell-phones are driving rich digital data services into the fabric of everyday life, These include news on various topics, Internet search, mapping and location-based information, mobile banking and gaming, downloading (i.e., screen savers), multimedia streaming, and various communication services (i.e., email, short messaging, messenger, and chaffing). The huge economic stake MDS has on its stakeholders warrants focused research to understand associated dynamics behind its adoption. Lyytinen and Yoo(2002) pointed out the limitation of traditional adoption models in explaining the rapid diffusion of innovations such as P2P or mobile services. Also, despite the increasing popularity of MDS, unexpected drop in its usage is observed among some people. Intrigued by these observations, an exploratory study was conducted to examine decision factors of MDS usage. Data analysis revealed that the increase and decrease of MDS use was influenced by different forces. The findings of the exploratory study triggered our confirmatory research effort to validate the uni-directionality of studied factors in affecting MDS usage. This differs from extant studies of IS/IT adoption that are largely grounded on the assumption of bi-directionality of explanatory variables in determining the level of dependent variables (i.e., user satisfaction, service usage). The research goal is, therefore, to examine if increase and decrease in the usage of MDS are explained by two separate groups of variables pertaining to information quality and system quality. For this, we investigate following research questions: (1) Does the information quality of MDS increase service usage?; (2) Does the system quality of MDS decrease service usage?; and (3) Does user motivation for subscribing MDS moderate the effect information and system quality have on service usage? The research questions and subsequent analysis are grounded on the two factor theory pioneered by Hertzberg et al(1959). To answer the research questions, in the first, an exploratory study based on 378 survey responses was conducted to learn about important decision factors of MDS usage. It revealed discrepancy between the influencing forces of usage increase and those of usage decrease. Based on the findings from the exploratory study and the two-factor theory, we postulated information quality as the motivator and system quality as the de-motivator (or hygiene) of MDS. Then, a confirmative study was undertaken on their respective role in encouraging and discouraging the usage of mobile data service.

SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering (협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템)

  • Joe, Denis Yongmin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.77-110
    • /
    • 2017
  • Recently, the diversification and individualization of consumption patterns through the web and mobile devices based on the Internet have been rapid. As this happens, the efficient operation of the offline store, which is a traditional distribution channel, has become more important. In order to raise both the sales and profits of stores, stores need to supply and sell the most attractive products to consumers in a timely manner. However, there is a lack of research on which SKUs, out of many products, can increase sales probability and reduce inventory costs. In particular, if a company sells products through multiple in-store stores across multiple locations, it would be helpful to increase sales and profitability of stores if SKUs appealing to customers are recommended. In this study, the recommender system (recommender system such as collaborative filtering and hybrid filtering), which has been used for personalization recommendation, is suggested by SKU recommendation method of a store unit of a distribution company that handles a homogeneous brand through a plurality of sales stores by country and region. We calculated the similarity of each store by using the purchase data of each store's handling items, filtering the collaboration according to the sales history of each store by each SKU, and finally recommending the individual SKU to the store. In addition, the store is classified into four clusters through PCA (Principal Component Analysis) and cluster analysis (Clustering) using the store profile data. The recommendation system is implemented by the hybrid filtering method that applies the collaborative filtering in each cluster and measured the performance of both methods based on actual sales data. Most of the existing recommendation systems have been studied by recommending items such as movies and music to the users. In practice, industrial applications have also become popular. In the meantime, there has been little research on recommending SKUs for each store by applying these recommendation systems, which have been mainly dealt with in the field of personalization services, to the store units of distributors handling similar brands. If the recommendation method of the existing recommendation methodology was 'the individual field', this study expanded the scope of the store beyond the individual domain through a plurality of sales stores by country and region and dealt with the store unit of the distribution company handling the same brand SKU while suggesting a recommendation method. In addition, if the existing recommendation system is limited to online, it is recommended to apply the data mining technique to develop an algorithm suitable for expanding to the store area rather than expanding the utilization range offline and analyzing based on the existing individual. The significance of the results of this study is that the personalization recommendation algorithm is applied to a plurality of sales outlets handling the same brand. A meaningful result is derived and a concrete methodology that can be constructed and used as a system for actual companies is proposed. It is also meaningful that this is the first attempt to expand the research area of the academic field related to the existing recommendation system, which was focused on the personalization domain, to a sales store of a company handling the same brand. From 05 to 03 in 2014, the number of stores' sales volume of the top 100 SKUs are limited to 52 SKUs by collaborative filtering and the hybrid filtering method SKU recommended. We compared the performance of the two recommendation methods by totaling the sales results. The reason for comparing the two recommendation methods is that the recommendation method of this study is defined as the reference model in which offline collaborative filtering is applied to demonstrate higher performance than the existing recommendation method. The results of this model are compared with the Hybrid filtering method, which is a model that reflects the characteristics of the offline store view. The proposed method showed a higher performance than the existing recommendation method. The proposed method was proved by using actual sales data of large Korean apparel companies. In this study, we propose a method to extend the recommendation system of the individual level to the group level and to efficiently approach it. In addition to the theoretical framework, which is of great value.