• Title/Summary/Keyword: 모멘트 하중

Search Result 761, Processing Time 0.021 seconds

Moment Transmission Capacity of H-shaped Beam by Stud Connectors (스터드 커넥터로 연결된 H형강보의 모멘트 하중의 전달성능)

  • Lee, Myung Jae;Choi, Wan Chol;Lee, Sang Gu;Kim, Jae Hee;Kim, Hee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.639-648
    • /
    • 2003
  • The objective of this study is to evaluate in-plane and out-of-plane moment transmission capacity of H-shaped beams about design load by stud connector. Four specimens were tested under monotonic moment loading condition in each case to evaluate those. The parameter of tests is the size of the H-shaped beams. The results show that moment transmission capacity of H-shape beams in the serviceability limit state by stud connectors is excellent observing to the design code of steel structures of Architectural Institute of Korea.

Redistribution of Negative Moments in Beams Subjected to Lateral Load (횡하중에 대한 휨재의 부모멘트 재분배)

  • Eom, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.731-740
    • /
    • 2011
  • Provisions for the redistribution of negative moments in KCI 2007 and ACI 318-08 use a method for continuous flexural members subjected to uniformly-distributed gravity load. Moment redistributions and plastic rotations in beams of reinforced concrete moment frames subjected to lateral load differ from those in continuous flexural members due to gravity load. In the present study, a quantitative relationship between the moment redistribution and plastic rotation is established for beams subjected to both lateral and gravity loads. Based on the relationship, a design method for the redistribution of negative moments is proposed based on a plastic rotation capacity. The percentage change in negative moments in the beam was defined as a function of the tensile strain of re-bars at the section of maximum negative moment, which is determined by a section analysis at an ultimate state using KCI 2007 and ACI 318-08. Span, reinforcement ratio, cracked section stiffness, and strain-hardening behavior substantially affected the moment redistribution. Design guidelines and examples for the redistribution of the factored negative moments determined by elastic theory for beams under lateral load are presented.

A Study on the Evaluation of elastic buckling strength of Singly Symmetric I-Beams (일축대칭 I형보의 탄성좌굴강도 산정에 관한 연구)

  • Ku, So-Yeun;Ryu, Hyo-Jin;Lim, Nam-Hyoung;Lee, Jin-Ok
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.79-82
    • /
    • 2008
  • The elastic critical moment of I-beams subjected to moment is directly affected by the following factors; loading type; loading position with respect to the mid-height of the cross section; end restraint conditions. Most design specifications usually provide buckling solutions derived for uniform moment loading condition and account for variable moment along the unbraced length with a moment gradient correction factor applied to these solutions. In order for the method in the SSRC Guide to be applicable for singly symmetric I-beams, improved moment gradient correction factors were proposed in this study. Finite element buckling analyses of singly symmetric I-beams subjected to transverse loading applied at different heights with respect to the mid-height of the cross section were conducted. Transverse loads consisting of a mid-span point load and a uniformly distributed load were considered in the investigation.

  • PDF

Load-Displacement Characteristics and Interactive Load Capacity Model for Metal Plate Connections in Wood(II) - Interactive Load Capacity Model and Experimental Verification - (목재(木材)-금속(金屬)플레이트 접합부(接合部)의 하중(荷重)-변위(變位) 특성(特性) 및 조합하중성능(組合荷重性能)에 대한 모형 분석 (II) - 조합하중모형(組合荷重模型)과 실험적(實驗的) 입증(立證) -)

  • Park, Moon-Jae;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.12-18
    • /
    • 1995
  • 고도(高度)의 엔지니어링 구조물(構造物)로 경제성이 높은 경량(輕量) 목조(木造)트러스에 사용될 수 있는 소나무(Pinus densiflora) 재(材)에 적용한 20게이지 아연도금 강(鋼) 플레이트 접합부(接合部)의 조합하중(組合荷重) 및 모멘트 성능(性能)을 평가하기 위하여 정밀도를 개선(改善)한 편심가력(偏心加力) 장치(裝置)를 창안하여 실험하고 반강절(半剛節) 접합부의 개념(槪念)과 가상(假想)일 법(法)을 적용한 모형을 유도하여 비선형(非線形) 해석(解析)하였다. 반강절(半剛節) 접합부(接合部)의 개념을 도입하여 저자가 유도한 비선형(非線形) 모형으로 조합하중 하에서의 접합부 거동을 해석한 결과, 금속 플레이트 접합부의 모멘트는 Wolfe 모형에 비하여 정확도가 높은 값으로 계산되었는데, 이는 비선형모형에서 접합부의 반강성(半剛性)에 의한 2차적인 모멘트의 영향을 적절히 고려한 때문으로 판단되었다. 본 연구에서 사용한 실험장치는 조합하중에 대한 금속 플레이트 접합부의 성능을 평가하기 위한 표준시험법(標準試驗法)으로 적용될 수 있을 것이며, 비선형(非線形) 해석방법(解析方法)은 조합하중(組合荷重)및 모멘트 성능(性能)을 예측(豫測)하는데 활용될 수 있다.

  • PDF

Redistribution of Negative Moments in Beams Subjected to Seismic Load (지진하중에 대한 보 부모멘트의 재분배)

  • Eom, Tae-Sung;Park, Hong-Gun;Kim, Jae-Yo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.145-146
    • /
    • 2010
  • A moment redistribution method was developed for earthquake design of reinforced concrete moment-resisting frames. For a frame designed with strong column-weak beam, the moment redistribution mechanism was investigated. Based on the result, the relationship between redistributed moment and plastic rotation in plastic hinges was established. By using the relationship, we developed a method for the evaluation of plastic rotations during the moment redistribution, addressing the effects of various design parameters including member stiffness, load condition, and plastic mechanism of structure.

  • PDF

플로팅 함체와 상호 거동에 따른 상부 골조의 모멘트 증대효과

  • Lee, Yeong-Uk;Park, Jeong-A;Choe, Ji-Hun;Chae, Ji-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.198-199
    • /
    • 2011
  • 플로팅 함체는 육상과 달리 지진하중의 영향을 받지 않으며 파랑하중의 영향을 크게 받는다. 파랑하중에 대한 안전성을 확보하기 위하여 범용구조해석 프로그램을 이용하여 해석하였다. 상부구조물의 영향을 확인하기 위하여 함체의 밀도를 변화시켜 상부하중에 대한 함체의 변위 응답을 확인을 한 결과, 밀도에 따른 함체 거동의 변화는 미미하였다. 해석을 통해 얻은 각 주기별 변위를 하중에 적용한 상부구조물의 모멘트 증가비는 파랑하중의 주기가 단주기에서 장주기로 갈수록 감소하는 양상을 보였으며, 축력은 파랑주기의 영향을 적게 받는 것으로 나타났다.

  • PDF

Behaviour Characteristics of Single Batter Pile under Dynamic Lateral Loads (동적 수평하중에 의한 단일 경사말뚝의 거동특성)

  • Kim, Jiseong;Noh, Jeongseob;Kang, Gi-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.9
    • /
    • pp.49-60
    • /
    • 2017
  • The purpose of this study is to investigate the behavior of a single batter pile with repeated lateral loading through model tests. Repeated loads were applied in one direction and two directions, and lateral resistance and bending moment were analyzed by varying the relative density of the ground. As a result, lateral resistance and maximum bending moment were increased in the order of Out batter, Plumb, and In batter when one-way and two-way dynamic lateral loads were applied. The depth at the maximum bending moment was more deeper with the loading. The moments at bottom layer were decreased in the order of Out batter, Plumb, and In batter but upper moments were increased with the same order. Also, various bottom and upper moments were small when the two-way dynamic lateral load was applied compared to one-way lateral load.

Design Bending Moment of Cantilever Slab for Long Span decks with KL-510 Load (KL-510 하중을 적용한 장지간 바닥판의 캔틸레버부 설계휨모멘트)

  • Chung, Chulhun;Joo, Sanghoon;Lee, Hanjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.595-604
    • /
    • 2016
  • This paper proposed the design bending moments of cantilever slabs with KL-510 load according to span length of long span decks. Their span length range is from 6.0 to 12.0 meter, and length of cantilever slabs is from 30 to 50 percent of their span length. The effects of orthotropic concrete decks, stiffness of steel girders and multiple lane loading factors (MLLF) were reflected in the design bending moments. The proposed design bending moments of cantilever slabs were compared to the design bending moments with DB-24 load.

A Study on the ALFD Design of Rolled Beams (압연형교의 ALFD설계에 관한 연구)

  • Chung, Kyung-Hee;Kim, Jin-Sung;Yang, Seung-Ie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.91-97
    • /
    • 2003
  • The maximum moment may occur at interior supports of continuous bridges. If the bigger moment is applied on them, a local yielding at interior supports may occur. They may show plastic behaviors, and the moment will be redistributed. The strength design, L.F.D., redistributes 10% of the negative moment which is obtained from the elastic analysis. However, A.L.F.D method computes the moment which is redistributed. This moment is called automoment. The moment-rotation curve is needed to find automoment. In this paper moment-rotation curve for compact sections suggested from AASHTO Guide Specifications is used to find automoment. Based on A.L.F.D. limit states specification method, a three-span continuous bridge is designed.

A Study on the Strength Rating of Continuous Composite Plate Girder Bridges by ALFD (ALFD방법에 의한 연속합성판형교의 강도평가에 대한 연구)

  • Han, Sang Cheol;Chung, Kyung Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.213-222
    • /
    • 1999
  • Elastic-plastic methods have been used for the better prediction of the actual behavior of continuous-composite plate girder bridges in the overload and maximum load analysis. The structural evaluation using ALFD(Alternate Load Factor Design) uses the elastic-plastic analysis. The plastic rotations that remain after the load is removed can be occurred by the yielding locations of the maximum moment section. This situation can occur due to the residual stresses even if the moment is below the theoretical yield moment. The local yielding causes positive automoments that assure elastic behavior under subsequent overloads. In this study, the automoments at the piers occurred due to the unit plastic rotations and other locations were calculated by the conjugate-beam method and three-moment equation, using the nine design span with progressively smaller pier sections. The automoments were determined by the developed computer programs in this study in which the moments and plastic rotations from the continuity and moment-inelastic rotation relationships must be equal. And also the ratings of 3-span continuous composite plate girder bridges with non-compact section were carried out according to the Korean Highway Bridge Specification.

  • PDF