• Title/Summary/Keyword: 모래 입경

Search Result 119, Processing Time 0.027 seconds

The Characteristics on Infiltration of Fine-Grained Soil into Various Materials for Ground Drainage (지반 배수재에 따른 세립토의 관입특성)

  • Koh, Yongil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.11
    • /
    • pp.39-43
    • /
    • 2015
  • In this study, the infiltration quantity of fine-grained soil into coarse-grained soil or aggregate for methods to accelerate consolidation drainage is checked by laboratory tests under various conditions and those characteristics on infiltration are examined closely. Irrespectively of pressures to fine-grained soil corresponding to stresses in a soil mass or moisture contents of fine-grained soil, fine-grained soil does not infiltrate into standard sand and marine sand, so it is verified that drain-resistance into sand mass of drainage / pile does not occur entirely and its shear strength would increase highly by water compaction. It is known that the infiltration depth of fine-grained soil into aggregate increases according that those size is larger in case of aggregates and it increases according that the pressure or the moisture contents is higher in case of same size aggregate. It is thought that drain-resistance into aggregate mass of drainage / pile would occurs by infiltrated fine-grained soil in advance though the infiltration depth of fine-grained soi of lower moisture content than liquid limit into 13 mm aggregate is low quietly. So gravel drain method or gravel compaction pile method, etc. using aggregate of gravels or crushed stones, etc. larger than sand particle size should be not applied in very soft fine-grained soil mass of higher natural moisture contents than liquid limit, and it is thought that its applying is not nearly efficient also in soft fine-grained soil mass of lower natural moisture contents than liquid limit.

Soil Properties of Granitic Weathered Soils in the Landslide-prone Areas in Seoul (서울지역 화강암 풍화토 토층지반의 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.29 no.1
    • /
    • pp.23-35
    • /
    • 2019
  • Landslides occur due to heavy rainfall in the summer season. Some of water may infiltrate into the ground; it causes a high saturation condition capable of causing a landslide. Soil properties are crucial in estimating slope stability and debris flow occurrence. The main study areas are Gwanaksan, Suraksan and Bukhansan (Mountain) in Seoul. A total of 44 soil samples were taken from the study area; and a series of geotechnical tests were performed. Physical and mechanical properties were obtained and compared based on region. As a result, among well-graded soils, they are classified as a clayey sand. Coarse-grained and fine-grained contents are approximately 95% and 5%, respectively, with very low amount of clay content. Density, liquid limit and dry unit weight are ranged in $2.62{\sim}2.67g/cm^3$, 27.93~38.15% and $1.092{\sim}1.814g/cm^3$. Cohesion and internal friction angle are 4 kPa and $35^{\circ}$ regardless of mountain area. Coefficient of permeability is varied between $3.07{\times}10^{-3}{\sim}4.61{\times}10^{-2}cm/sec$; it means that it results in great seepage. Permeability is inversely proportional to the uniformity coefficient and is proportional to the effective particle size. In the formal case, there was a difference by mountain area, while in the latter, the tendency was almost similar.

Environmental Change of Sediment and Vegetation in the Hwanggang River (황강의 유사 및 식생 환경 변화)

  • Jeong, Seokil;Choi, Hyun Gu;Kim, Hwa Yeong;Lim, Tae Hwan;Ryu, Jong Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.454-454
    • /
    • 2021
  • 하천 환경에 대한 최근의 사회적 관심은 하천횡단구조물에 대한 평가를 기존의 이□치수적 관점에서 환경□생태학적 관점으로 변화시키고 있다. 이는 자연하천(특히 충적하천)이 수공구조물에 가로막히면 일반적으로 유사, 식생 등의 하천 제반 환경에 부정적인 영향을 준다는 전제에서 댐에 대한 평가가 시작되는 것으로, 국내에서는 이러한 인식의 변화가 2010년대 이후 널리 퍼지면서 현재는 더 이상 신규 댐을 건설할 수 없게 되었다. 댐에 의한 수리 특성과 기후 변화 등으로 댐 하류하천의 유사, 식생, 생태변화는 최근 급격하게 진행되었지만, 정량적인 변화량 및 지표 도출에 대한 연구는 대부분 최근의 data를 반영하지 못하고 있어 관련 원인과 대책 제시에 다소 한계가 있다고 생각된다. 이에 본 연구에서는 낙동강 주요 지류 중 하나이며, 충적하천인 황강을 대상으로 가용한 data를 활용하여, 합천댐 건설 전□후의 유사, 식생변화로 대표되는 하천 환경변화를 정량적으로 분석하고, 변화 원인을 파악하고자 하였다. 유사환경의 변화 분석은 댐 건설 전부터 최근까지의 문헌들에서 조사□제시된 data를 이용하였다. 연도별 최심 및 평균하상고는 댐 건설 전과 비교해 1.0 m가량 감소하였는데, 댐에 의한 세류사 공급차단보다는 골재 채취 및 하도 정비 등이 지배적인 원인인 것으로 파악되었다. 유사 입경의 변화는 댐 건설 전 대비 조립화가 진행되어 모래비율이 감소하고 유사 입경(댐 직하류 약 2배)이 증가하였다. 이는 골재 채취 및 댐에 의한 세류사 차단에 기인한 것으로, 준설된 지역의 하상이 모래 대신 자갈로 대체되고 있기 때문인 것으로 판단된다. 유사량의 경우 몇 번의 조사 과정이 있었으나, 기준이 명확하지 않아 정량적인 변화는 파악하기 어려웠다. 제외지의 식생 분포는 본 연구에서 개발한 이미지 처리 기법을 동원하여 분석하였으며, 대상은 합천댐 하류 중 모래 사주의 비율이 큰 곳을 선택(3지점)하였다. 분석 결과 2008~2011년 이전까지 큰 폭으로 사주가 식생 서식처로 변화(약 20%)되었으며, 이후 큰 변화 없이 안정화 된 경향을 보였다. 이는 2009~2011년 동안 식생이 활착되는 봄~초여름의 강우량 감소, 댐의 홍수조절 및 하상 조립화로 인한 다년생 식생의 활착되고 성장할 시간이 확보되면서 홍수 등 외부 변화에 대한 식생의 대응 능력이 증가했기 때문인 것으로 생각된다. 합천댐이 황강 환경변화에 주는 영향은 분명하지만, 현재 상황은 기후 변화와 인위적인 골재채취도 주요 원인으로 판단되는 바, 향후 하천 환경 개선 계획 수립 시 이러한 변화 원인이 고려된 대책이 수립되어야 할 것이다.

  • PDF

Floc Property of Yeongsan Cohesive Bed Sediment with Respect to Salinity and Sediment Concentration (점착성 퇴적물의 염분과 퇴적물농도에 따른 플럭 특성: 플럭카메라를 이용한 실험연구)

  • Shin, Hyun-Jung;Smith, S. Jarrell;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.3
    • /
    • pp.122-130
    • /
    • 2013
  • To examine floc characteristics of cohesive bed sediment of the Yeongsan River estuary, a floc camera system has been developed and utilized to observe flocs under varying conditions. In order to validate the floc camera system, sand particles were passed through 88-125 and $63-88{\mu}m$ sieves and observed within the laboratory. Mean grain size and settling velocities were found to be 102 and $56.2{\mu}m$ and 6.7 and 5.9 mm/s, respectively. Artifacts of particles estimated outside of the sieve range are attributed to being imaged out of the depth of focus. However, as mean grain size and settling velocity of each size class were within the confidence interval, the floc camera system was confidently used to examine cohesive bed sediments of Yeongsan River estuary. The bed sediment sample was prepared with a concentration of 0.1 g/L in 0 psu deionized water. The mean grain size, settling velocity and fractal dimension of flocs were $40.6{\pm}0.66{\mu}m$, 14 mm/s, and 2.86, respectively. Experiments were also conducted using different salinities (10 and 34 psu) and sediment concentrations (0.1 and 0.3 g/L). Despite changing these parameters, the mean observed grain size and settling velocities were found to be the same within the error range of the system. The relatively higher values of settling velocity and fractal dimension are considered a result of the sediment containing relatively small concentrations of organic matter. Moreover, consistent floc size over various grain sizes and concentrations may be the result of insufficient turbulence to aggregate flocs.

A Study on the High Temperature Thermal Conductivity Measurement of Nanofluid Using a Two-Phase Model (2상 모델을 이용한 나노유체의 고온 열전도도 측정 연구)

  • Park, Sang-Il;Lee, Wook-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.153-156
    • /
    • 2010
  • The effective thermal conductivity of two-phase materials such as unbonded silica sands saturated with a nanofluid was measured at high temperature using the transient thermal probe method. The nanofluid used in this study was a water-based mixture of 0.1 vol% $Al_2O_3$ nanoparticles with a diameter of 45 nm. The convection problem for fluids was prevented with this measurement method because the fluid was confined to within very small pore spaces. Based on the prediction model for unbonded sands, the thermal conductivities of the saturating nanofluid at high temperatures could be determined with the measured effective thermal conductivities for the two-phase material. In the results, increases in the thermal conductivity ratios of the nanofluid to pure water when temperatures were varied from $30^{\circ}$ to $80^{\circ}C$ were within the range of 4.87%~5.48%.

Properties of Cement Mortar as Particle Size and Hydrothermal Synthesis Temperature Using Scheelite Tailing (중석 광미를 사용한 시멘트 모르타르의 입도 및 수열합성온도별 물리적 특성)

  • Chu, Yong Sik;Seo, Seong Gwan;Choi, Sung Bum;Kim, Gyoung man;Hong, Seok Hwan
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.46-53
    • /
    • 2019
  • Cement mortar was hydrothermal-synthesized with particle size of tailings using scheelite tailings deposited without proper treatment, and its physical properties were investigated. The mixing ratios of water-cement and sand-cement were fixed at 75 % and 400 %, respectively, during preparing cemnt mortar, and the sand was replaced by the tailings at 0 ~ 50 %. The particle size of tailings was controlled at 9.3 ~ 53.0 ℃, and the hydrothermal temperature was kept at 60 ~ 180 ℃ for 6 hours after the temperature increased to pretermined temperature with 2 ℃ heating rate. The compressive strength increased with increasing hydrothermal temperature. The compressive strengths were 55.2 MPa and 54.5 MPa when the mortars were prepared with 30 % low arsenic and high arsenic tailings after 60 min grinding. The compresiive strenght was enhanced 300 % compared with reference sample.

Field Measurement and Analysis of Fluvial Sediment in the Cheongmi-Stream(I) - Hydraulic and Sediment Characteristics (청계천에서의 하천 유사 측정 및 분석(I) - 수리량 및 유사량 -)

  • 유권규;우효섭
    • Water for future
    • /
    • v.24 no.2
    • /
    • pp.71-79
    • /
    • 1991
  • Some selected hydraulic characteristics including the average velocitv, geometry of the channel cross-section, and water temperature, and sediment-characteristics including suspended sediment concentration , and the size distributions of suspended and bed-sediments were collected at two measuring stations in the Cheongmi-Stream during a flood period. The river bed investigated for this study is composed completely of sands, and it can be considered a typical alluvial channel. The major results obtained from the analysis of the date collected are as follows: 1) Only during floods, a substantial sediment transport occurs in the river; 2) The stage-discharge relations are changed frequently, especially for low flows; 3) The friction in the flow increases with an increase in the flow discharge; 4) Slits and clays are dominant in suspended sediments during normal flows, while sands are dominant during floods; 5) The vertical distributions of the flow velocity and suspended sediment concentration can be described, respectively, by Prandt1-von Karman's log-law and Rouse's exponential law. It is judged that the above results are commonly adapted for other alluvial rivers, although they were obtained from a limited number of data collected from a specific river reach.

  • PDF

An analysis on gravel and sand ofsand-gravel bar in the Duchon stream of Hong-Cheon Region (홍천 두촌천 사력퇴의 역과 모래 분석)

  • Oh, Su Jeong;Cho, Heon;Hwang, Sung-Han;Kim, Man Kyu
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.109-120
    • /
    • 2014
  • This study is an analysis on gravel and sand of sand-gravel bar that stretches variously in the Duchon stream basin, which is one of Hong-Cheon River(a well-developed sand-gravel bar in upstream river)'s upper stream basin. The purpose of this study was to understand the characteristic of the stream's topographic development that variously occur in the small basin by comparing the differences between the aspects of development and the sediment of sand-gravel bar in each section and by examining the transition of sediments moving from upstream to downstream. Through the analysis on the roundness and flatness of gravel, we observed an irregular trend following the increase in supply of granite gravel and gneiss gravel as we traveled downstream. As for the aspect of change in sand's grain size, the overall ratio of medium-coarse sand was very high, but the results showed no big difference in the change following the inflow of stream from the main stream section to the gneiss and granite zone.

Thermal Conductivity of Sand-Tire Rubber Mixtures According to Degree of Saturation: Effect of Hydrophobic Particles (포화도에 따른 모래-타이어칩 혼합토의 열전도도 변화: 입자의 소수성 영향)

  • Oh, Jiseok;Choo, Hyunwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.7-18
    • /
    • 2024
  • Because of their mineral composition, tire chips have very low thermal conductivity compared with natural geomaterials, leading to the use of sand-tire rubber mixtures in thermally insulating applications. However, systematic studies evaluating factors affecting the thermal conductivity of sand-tire rubber mixtures have been very limited. Thus, this study investigated the thermal conductivity of sand-tire rubber mixtures with varying size ratios and tire chip fractions according to the degree of saturation (S). Specimens were prepared in insulated cells, and thermal needle probe tests were performed. In addition, the contact angle and solid surface free energy of sand-tire rubber mixtures were investigated. The results of this study revealed that the thermal conductivity decreased with increasing tire chip fraction but increased with increasing water content (or S). However, the trend of increasing thermal conductivity with S varied with the tire chip fraction, and the specimens with tire chip fraction > 0.4 clearly showed a delayed increase in thermal conductivity with increasing S. This reflected that hydrophobic particles (tire chip) affected the dependency of thermal conductivity on S because of the delayed formation of capillary water bridges, which served as additional thermal conduction paths with increased moisture content.

Markets and Status kof Bag Filters in Korea (국내 여과집진막 시장 및 기술현황)

  • 김병채
    • Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.1-15
    • /
    • 1995
  • 대기오염 문제가 국가적인 사회문제로 대두되면서 대기오염 방지장치의 수요가 급증하고, 점차 강화되는 환경오염 규제로 인하여 고효율의 오염방지장치에서 대표적인 집진장치 기술은 대기 및 실내오염 제어뿐만 아니라, 정확성이 높은 첨단 클리룸 수요의 증가 등으로 인하여 산업체의 각 분야에서 필수적이면서도 기본적인 기술이다. 대기중의 분진은 분자의 응축 및 핵생성 등에 의하여 발생되는 매우 미소한 입자($0.05{mu}{ extrm{m}}$단위)와 일반공장 및 작업장 등에서 발생되는 분진(0.1~$10{mu}{ extrm{m}}$) 그리고 바람에 의한 지표면의 흙, 모래 등에 의한 비교적 큰 분진 등의 광범위한 조성과 입경분포를 가진다. 이 가운데, 특히 산업발달에 따라 불가피하게 생성되며, 대기오염의 주종을 이루면서 인체에 가장 유해한 분진입자는 산업체의 오일 및 석탄연소 보일러, 자동차, 제철/제강 및 시멘트 플랜트 등으로 배출되는 미세입자들이며, 앞으로 이들의 제어에 관한 연구가 지속적인 관심의 대상이 될 것이다.

  • PDF