DOI QR코드

DOI QR Code

Floc Property of Yeongsan Cohesive Bed Sediment with Respect to Salinity and Sediment Concentration

점착성 퇴적물의 염분과 퇴적물농도에 따른 플럭 특성: 플럭카메라를 이용한 실험연구

  • Shin, Hyun-Jung (Department of Oceanography, Inha University) ;
  • Smith, S. Jarrell (Coastal and Hydraulic Laboratory, US Army Engineer Research and Development Center) ;
  • Lee, Guan-Hong (Department of Oceanography, Inha University)
  • 신현정 (인하대학교 해양과학과) ;
  • ;
  • 이관홍 (인하대학교 해양과학과)
  • Received : 2013.03.13
  • Accepted : 2013.06.19
  • Published : 2013.08.31

Abstract

To examine floc characteristics of cohesive bed sediment of the Yeongsan River estuary, a floc camera system has been developed and utilized to observe flocs under varying conditions. In order to validate the floc camera system, sand particles were passed through 88-125 and $63-88{\mu}m$ sieves and observed within the laboratory. Mean grain size and settling velocities were found to be 102 and $56.2{\mu}m$ and 6.7 and 5.9 mm/s, respectively. Artifacts of particles estimated outside of the sieve range are attributed to being imaged out of the depth of focus. However, as mean grain size and settling velocity of each size class were within the confidence interval, the floc camera system was confidently used to examine cohesive bed sediments of Yeongsan River estuary. The bed sediment sample was prepared with a concentration of 0.1 g/L in 0 psu deionized water. The mean grain size, settling velocity and fractal dimension of flocs were $40.6{\pm}0.66{\mu}m$, 14 mm/s, and 2.86, respectively. Experiments were also conducted using different salinities (10 and 34 psu) and sediment concentrations (0.1 and 0.3 g/L). Despite changing these parameters, the mean observed grain size and settling velocities were found to be the same within the error range of the system. The relatively higher values of settling velocity and fractal dimension are considered a result of the sediment containing relatively small concentrations of organic matter. Moreover, consistent floc size over various grain sizes and concentrations may be the result of insufficient turbulence to aggregate flocs.

점착성 퇴적물이 다른 광물입자 혹은 유기물과 결합하여 형성되는 플럭(floc)을 현장에서 관측하기 위한 플럭카메라 시스템을 제작하였다. 본 연구의 목적은 실험실에서 플럭카메라 시스템을 검증하고 영산강 점착성 해저 퇴적물의 플럭 특성을 규명하는 데 있다. 플럭카메라 시스템의 검증은 $88-125{\mu}m$$63-88{\mu}m$의 체에 걸러진 모래를 사용하였다. 플럭카메라 영상을 통해 분석한 평균입경은 각각 102와 $65.2{\mu}m$고, 침강속도는 각각 6.7과 5.9 mm/s이다. 카메라 심도에서 벗어난 입자는 실제 크기보다 크거나 작게 측정이 되는 현상으로 인해 체의 범위를 벗어난 입자가 관측되지만, 입경과 침강속도의 평균값에 대한 95% 신뢰수준 오차가 체의 범위에 속하므로 플럭카메라를 이용한 분석을 신뢰할 수 있었다. 영산강 하구의 해저 표층 퇴적물을 0 psu의 증류수에 0.1 g/L 퇴적물 농도로 관측한 평균 입경은 약 $40.6{\pm}0.66{\mu}m$, 침강속도는 1.4 mm/s 프랙탈 차원은 2.86이었다. 추가적으로 10과 34 psu의 염분과 0.1 및 0.3 g/L의 퇴적물 농도에서 관측한 평균입경과 침강속도는 서로 유사했고, 그 값들은 오차범위 내에 존재한다. 플럭카메라 관측을 통해서 얻은 플럭의 빠른 침강속도와 프랙탈 차원은 유기물 함량이 상대적으로 적은 표층퇴적물의 특성을 반영한다. 또한, 염분과 퇴적물 농도를 변화시켰음에도 플럭의 입경 변화가 거의 없는 것은 플럭을 형성에 충분한 난류 강도가 주어지지 못했기 때문이라고 판단된다. 향후에는 염분, 퇴적물 농도 및 외력의 변화에 따른 플럭의 특성을 밝히는 연구가 필요하다.

Keywords

References

  1. Burban, P.Y., W. Lick, and J. Lick, 1989. The flocculation of finegrained sediments in estuarine waters. J. Geophys. Res., 94: 8323-8330. https://doi.org/10.1029/JC094iC06p08323
  2. Dearnaley, M.P., 1996. Direct measurments of settling velocities in the owen tube: a comparision with gravimetric analysis. J. Sea Res., 36(1/2): 41-47.
  3. Eisma, D., 1986. Flocculation and deflocculation of suspended matter in estuaries. J. Sea Res., 20: 183-199. https://doi.org/10.1016/0077-7579(86)90041-4
  4. Gibbs, R.J., 1983. Coagulation rates of clay minerals and natural sediments. J. Sed. Res., 53(4): 1193-1203.
  5. Gratiot, N., and A.J. Manning, 2004. An experimental investigation of floc characteristics in a diffusive turbulent flow. J. Coastal Res., 41: 105-113.
  6. Han, M., T.-I. Kim, and J. Kim, 2006. Application of image analysis evaluate the flocculation process. AQUA, 55: 7-8.
  7. Heo J.-Y., I.-J. Kang, and S.-W. Lee, 2006. The Characteristic floc growth in coagulation and flocculation processes. Korean Chem. Eng. Res., 44(2): 207-215 (in Korean).
  8. Hill, P.S., G. Voulgaris, and J.H. Trowbridge, 2001. Controls on floc size in a continental shelf bottom boundary layer. J. Geophys. Res., 106(C5): 9543-9549. https://doi.org/10.1029/2000JC900102
  9. Jouon, A., S. Ouillon, P. Douillet, J.P. Lefebvre, J.M. Fernandez, X. Mari, and J.-M. Froidefond, 2008. Spatio-temporal variability in suspended particulate matter concentration and the role of aggregation on size distribution in a coral reef lagoon. Marine Geology, 256: 36-48. https://doi.org/10.1016/j.margeo.2008.09.008
  10. Jung, E.-T., D.-H. Kim, J.-W. Heo, and K.-N. Hwang, 2012. In situ measurement of settling velocity for suspended floc sediment with BW method. Korea Water Resources Association, 2012 May 16: 722-726 (in Korean).
  11. Khelifa, A., and P.S. Hill, 2006. Models for effective density and settling velocity of flocs. J. Hydr. Res., 44(3): 390-401. https://doi.org/10.1080/00221686.2006.9521690
  12. Kim, Y., 2006. Morphological parameters of the sludge flocs in a long rectangular secondary settling tank. Environmental Engineer, 23(8): 22-29 (in Korean).
  13. Krank, K., and T.G. Milligan, 1992. Characteristics of suspended particles at an 11-hour anchor station in San Francisco Bay. California, J. Geophys. Res., 97(C7): 11373-11382. https://doi.org/10.1029/92JC00950
  14. Lee S., and H. Kang, 2009. Compare of phragmites communis trin. communities in Han River estuarine wetland of dominant species and different soil characteristics. Korea Water Resources association, 2009 May 21: 2132-2137 (in Korean).
  15. Lim, H.-S., and C.-H. Seo, 2011. Structure change of macrozoobenthic community after 10 years in Youngsan River estuarine bay, southwest coast of Korea. The Sea, 16(4): 254-267 (in Korean). https://doi.org/10.7850/jkso.2011.16.4.254
  16. Lunau, M., A. Sommer, A. Lemke, H.-P. Grossart, and M. Simon, 2004. A new sampling device for microaggregates in turbid aquatic systems. Limn. and Oceanog., Methods, 2: 387-397. https://doi.org/10.4319/lom.2004.2.387
  17. Manning, A. J., 2004. Observations ofthe properties of floeeulated cohesive sediment in Three Western European Estuaries. J. Coastal Res., 20: 70-81.
  18. Manning, A.J., S.J. Bass, and K.R. Dyer, 2006. Floc properties in the turbidity maximum of a mesotidal estuary during neap and spring tidal conditions. Marine Geology, 235: 193-211. https://doi.org/10.1016/j.margeo.2006.10.014
  19. Manning, A.J., J.V. Baugh, R.L. Soulsby, J.R. Spearman, and R.J.S. Whitehouse, 2011. Cohesive sediment flocculation and the application to settling flux modelling. Sediment transport, Edited by Silvia Susana Ginsberg, ISBN 978-953-307-189-3, InTech, Published online, 91-116 pp.
  20. Manning, A.J., P.L. Friend, N. Prowse, and C.L. Amos, 2007. Estuarine mud flocculation properties determined using an annular mini-flume and the LabSFLOC system. Cont. Shelf Res., 27(8): 1080-1095. https://doi.org/10.1016/j.csr.2006.04.011
  21. Mantovanelli, A., and P.V. Ridd, 2006. Devices to measure settling velocities of cohesive sediment aggregates: A review of the in situ technology. J. Sea Res., 56: 199-226. https://doi.org/10.1016/j.seares.2006.05.002
  22. Mantovanelli, A., and P.V. Ridd, 2008. SEDVEL: An underwater balance for measuring in situ settling velocities and suspended cohesive sediment concentrations. J. Sea Res., 60: 235-245. https://doi.org/10.1016/j.seares.2008.10.001
  23. Mikkelsen, O.A., P.S. Hill, and T.G. Milligan, 2006. Single-grain, microfloc and macrofloc volume variations observed with a LISST-100 and a digital floc camera. J. Sea Res., 55: 87-102. https://doi.org/10.1016/j.seares.2005.09.003
  24. Mikkelsen, O.A., P.S. Hill, T.G. Milligan, and R.J. Chant, 2005. In situ particle size distributions and volume concentrations from a LISST-100 laser particle sizer and a digital floc camera. Cont. Shelf Res. 25: 1959-1978. https://doi.org/10.1016/j.csr.2005.07.001
  25. Mikkelsen, O.A., T.G. Milligan, P.S. Hill, and D. Moffatt, 2004. INSSECT - an instrumented platform for investigating floc properties close to the seabed. Limn. and Oceanog.: Methods, 2: 226-236. https://doi.org/10.4319/lom.2004.2.226
  26. MLTM (Ministry of Land, Transport and Maritime Affairs), 2012. Development of Integrated Estuarine Management System, MLTM, 231 pp (in Korean).
  27. Owen, M.W., 1976. Determination of the settling velocities of cohesive muds. Hydraulic Research Station, Wallingford, Report, IT, 161: 1-8.
  28. Raudkivi, A.J., 1998. Loose boundary hydraulics. fourth ed., Taylor & Francis, London, 12-21 pp.
  29. Schiller, L., and Naumann, A., 1933. Uber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z. VDI, 77.
  30. Seo, Y. D., 2007. A Study on settling properties of cohesive sediments in Han estuary, Korea. Masters thesis, Chonbuk National Univ., Jeonju, 154 pp (in Korean).
  31. Smith, S.J., 2010. Fine sediment dynamics in dredge plumes. Ph. D. Thesis, School of Marine Science, College of William and Mary, Gloucester Point, VA, 21-24 pp.
  32. Smith, S.J., and C.T. Friedrichs, 2011. Size and settling velocities of cohesive flocs and suspended sediment aggregates in a trailing suction hopper dredge plume. Cont. Shelf Res., 10(10): S50-S63.
  33. Son M., 2009. Flocculation and transport of cohesive sediment. PhD Thesis, Univ. Florida, Gainesville, 39-100 pp.
  34. Son, M., 2011. Measurement of settling velocity, size and density and analysis of fractal dimension of cohesive sediment. J. Limnol., 44(1): 58-65 (in Korean).
  35. Spicer, P.T., S.E. Pratsinis, J. Raper, R. Amal, G. Bushell, and G. Meesters, 1998. Effect of shear schedule on particle size, density, and structure during flocculation in stirred tanks. Powder Technology, 97: 26-34. https://doi.org/10.1016/S0032-5910(97)03389-5
  36. Van Leussen, W.V., and J.M. Cornelisse, 1993. The determination of the sizes and settling velocities of estuarine flocs by underwater video system. Netherlands, J. Sea Res., 31(3): 231-241. https://doi.org/10.1016/0077-7579(93)90024-M
  37. Van Rijn, L.C., 1993. Sediment transport by currents and waves, Delft Hydraulics, Netherlands.
  38. Winterwerp, J.C., 1998. A simple model for turbulence induced flocculation of cohesive sediment. J. Hydraulic Res., 36(3): 309-326. https://doi.org/10.1080/00221689809498621
  39. Yang, S.-H., and K.-N. Hwang, 2008. An analysis of the variation in the settling properties of cohesive sediments before and after closure of the saemankeum seadike. J. Ocean Eng. and Tech., 22(4): 20-26 (in Korean).
  40. Yoon, K.-T., H.-S. Park, and M. Ghang, 2011. Implication to ecosystem assessment from distribution pattern of subtidal The Sea, 16(4): 246-253 (in Korean). https://doi.org/10.7850/jkso.2011.16.4.246