• Title/Summary/Keyword: 모델 이해

Search Result 2,815, Processing Time 0.043 seconds

An Artificial Neural Network for Efficiently Learning Representation of Screened Foam Generation (스크린드 거품 생성을 효율적으로 학습 표현하는 인공신경망)

  • Kim, Donghui;Yun, Ju-Young;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.557-558
    • /
    • 2022
  • 본 논문에서는 인공신경망을 통해 화면에 투영된 거품입자를 효율적으로 생성할 수 있는 기법에 대해 소개한다. 유체 시뮬레이션 기반으로 바다거품을 계산하기 위해서는 유체역학과 수치해석학에 대한 이해가 필요하며, 유속의 유기물, 풍속 등 다양한 물리적 요소를 고려해야하기 때문에 복잡하고 계산양이 커진다. 오일러리안(Eulerian)접근법에서는 격자의 해상도가 커지게 되고, 라그랑지안(Lagrangian)접근법에서는 입자의 개수가 많아지기 때문에 이 문제를 다루기 쉽지 않은 문제이다. 이러한 문제를 완화하기 위해 본 논문에서는 인공신경망을 이용한 분류 모델 학습을 통해 3차원 유체 시뮬레이션으로부터 투영된 2차원 스크린 이미지로부터 거품이 생성될 위치를 예측한다. 결과적으로 물의 스크린에 투영된 물 입자의 깊이와 가속도로부터 거품의 생성 위치를 예측함으로서 복잡한 수치해석학 없이 학습을 통해 효율적으로 거품을 표현하는 결과를 보여준다.

  • PDF

A Study on Elements of Crime Facts and Visualizing the Storyline through Named Entity Recognition and Event Extraction (개체명 인식과 이벤트 추출을 통한 판결문 범죄사실 구성요소 및 스토리라인 시각화방안 연구)

  • Lee, Yu-Na;Park, Sung-Mi;Park, Ro-Seop
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.490-492
    • /
    • 2022
  • 최근 사법분야에 지능형 법률 서비스를 제공하게 되면서 학습데이터로서 판결문의 중요성이 높아지고 있다. 그중 범죄사실은 수사자료와 유사하여 범죄수사에 귀중한 자료역할을 하고 있지만, 주체가 생략되거나 긴 문장의 형태로 인해 구성요건을 추출하고 사건의 인과관계 파악이 어려울 수 있어 이를 분석하는데 적지 않은 시간과 인력이 소비될 수밖에 없다. 따라서, 본 논문에서는 사전학습모델을 활용한 개체명 인식과 형태소 분석기반 이벤트 추출기법을 범죄사건 재구성에 적용하여 핵심 사건추출을 간편화하고 시각적으로 표현해 전체적인 사건 흐름 이해도를 향상할 수 있는 방법론을 제안하고자 한다.

Enhancing E-commerce Competitiveness through Brand-Trend Association Based on Product Names and Reviews (상품명 및 리뷰를 기반으로 한 브랜드-트렌드 연관성을 통한 이커머스 경쟁력 강화)

  • Ki-young Shin;Hun-young Jung
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.596-599
    • /
    • 2023
  • 본 연구는 브랜드가 시장 트렌드를 파악하고 이를 활용하여 경쟁 우위를 확보하고 성장하는 방법을 탐구하고 있다. 이를 위해 세 가지 핵심 요소를 고려하였다. 첫째, 시장의 트렌드 정보를 파악하기 위해 검색 포털 사이트의 검색어 랭킹 정보를 활용하였다. 둘째, 브랜드 상품과 트렌드의 연관성을 분석하기 위해 상품 타이틀과 리뷰 데이터를 활용하였다. 셋째, 각 상품의 브랜드 중요성을 추정하기 위해 리뷰 수, 리뷰 길이, 표현의 다양성 등을 고려했다. 연구 결과, 브랜드는 시장 트렌드를 더욱 정확하게 이해하고 파악함으로써 경쟁 우위를 확보하고 성장할 수 있는 기회를 제공함을 확인하였다. 더불어, 이를 통해 브랜드는 소비자의 요구를 더욱 효과적으로 충족시키고 고객 경험을 개선하는데 기여할 수 있을 것으로 기대된다.

  • PDF

Predicting User Personality Based on Dynamic Keyframes Using Video Stream Structure (비디오 스트림 구조를 활용한 동적 키프레임 기반 사용자 개성 예측)

  • Mira Lee;Simon S.Woo;Hyedong Jung
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.601-604
    • /
    • 2023
  • 기술이 발전함에 따라 복합적인 모달리티 정보를 포함하는 멀티미디어 데이터의 수집이 용이해지면서, 사람의 성격 특성을 이해하고 이를 개인화된 에이전트에 적용하고자 하는 연구가 활발히 진행되고 있다. 본 논문에서는 비디오 스트림 구조를 활용하여 사용자 특성을 예측하기 위한 동적 키프레임 추출 방법을 제안한다. 비디오 데이터를 효과적으로 활용하기 위해서는 무작위로 선택한 프레임에서 특징을 추출하던 기존의 방법을 개선하여 영상 내 시간에 따른 정보와 변화량을 기반으로 중요한 프레임을 선택하는 방법이 필요하다. 본 논문에서는 제 3자가 평가한 Big-five 지표 값이 레이블링된 대표적인 데이터셋인 First Impressions V2 데이터셋을 사용하여 외면에서 발현되는 특징들을 기반으로 영상에서 등장하는 인물들의 성격 특성을 예측했다. 결론에서는 선택된 키프레임에서 멀티 모달리티 정보를 조합하여 성격 특성을 예측한 결과와 베이스라인 모델과의 성능을 비교한다.

Development of Context and Vocabulary Group-Based Intelligent English Vocabulary Learning System (문맥 및 어휘 그룹 기반의 지능형 영어 어휘 학습 시스템의 개발)

  • Do-Hyeon Kim;Hong-Jun Jang;Byoungwook Kim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.19-20
    • /
    • 2023
  • 영어 교육 시장 확대로 다양한 영어 학습 시스템이 개발되고 있다. 그러나 어휘의 문맥적 이해와 효과적인 학습 방법을 결합한 지능형 어휘 학습 시스템에 대한 연구는 미비하다. 본 연구에서는 임의의 n 개 영어 단어가 한 그룹으로 제시되고, 이들을 모두 포함한 예문을 제공하는 지능형 영어 어휘 학습 시스템을 개발한다. 본 연구에서는 임의의 n 개 영어 단어가 주어졌을 때 문맥에 맞는 영어 예문을 자동으로 생성하는 모델을 개발하였다. 어휘 평가를 바탕으로 자동으로 취약 어휘를 선정하며 학습자들이 해당 어휘를 학습 할 수 있도록 진행한다. 본 연구에서 개발한 지능형 영어 어휘 학습 시스템의 사용성 평가를 위해 설문 검사를 실시하였다. 설문 결과는 문맥 및 어휘 그룹 기반의 지능형 영어 학습 시스템은 사용자들이 사용하기 편리하고 어휘 능력을 향상시키는데 도움이 될 수 있음을 보여준다.

A Technique to Detect Spam SMS with Composed of Abnormal Character Composition Using Deep Learning (딥러닝을 이용한 비정상 문자 조합으로 구성된 스팸 문자 탐지 기법)

  • Ka-Hyeon Kim;Heonchang Yu
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.583-586
    • /
    • 2023
  • 대량 문자서비스를 통한 스팸 문자가 계속 증가하면서 이로 인해 도박, 불법대출 등의 광고성 스팸 문자에 의한 피해가 지속되고 있다. 이러한 문제점을 해결하기 위해 다양한 방법들이 연구되어 왔지만 기존의 방법들은 주로 사전 정의된 키워드나 자주 나오는 단어의 출현 빈도수를 기반으로 스팸 문자를 검출한다. 이는 광고성 문자들이 시스템에서 자동으로 필터링 되는 것을 회피하기 위해 비정상 문자를 조합하여 스팸 문자의 주요 키워드를 의도적으로 변형해 표현하는 경우에는 탐지가 어렵다는 한계가 있다. 따라서, 본 논문에서는 이러한 문제점을 해결하기 위해 딥러닝 기반 객체 탐지 및 OCR 기술을 활용하여 스팸 문자에 사용된 변형된 문자열을 정상 문자열로 복원하고, 변환된 정상 문자열을 문장 수준 이해를 기반으로 하는 자연어 처리 모델을 이용해 스팸 문자 콘텐츠를 분류하는 방법을 제안한다. 그리고 기존 스팸 필터링 시스템에 가장 많이 사용되는 키워드 기반 필터링, 나이브 베이즈를 적용한 방식과의 비교를 통해 성능 향상이 이루어짐을 확인하였다.

Deep learning network attack trends using side channel analysis (부채널 분석을 이용한 딥러닝 네트워크 공격 동향)

  • Duk-Young Kim;Hyun-Ji Kim;Hyun-Jun Kim;Hwa-Jeong Seo
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.192-195
    • /
    • 2024
  • 최근 빠른 속도로 개발되고 있는 인공지능 기술은 여러 산업 분야에서 활용 되고 있다. 그러나 최근 딥러닝 네트워크에 대한 부채널 공격 기법들이 등장하고 있으며, 이는 해당 모델을 재구현하여 자율 주행 자동차에 대한 해킹 등과 같이 치명적인 보안 위협이 될 수 있으므로 이에 대한 이해와 대응책이 필요하다. 본 논문에서는 딥러닝 네트워크에 대한 부채널 공격 기법 동향에 대해 살펴보고, 이에 대한 대응 기술 또한 함께 알아본다.

Implementation of 5G/6G Channel Decoder based on Graph Neural Networks (그래프 신경망 기반 5G/6G 채널 복호기 구현)

  • Younghyeon Kim;Hyeok Joo;Eunsoo Kim;Yongho Ahn;Hyeong jeong Yang
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.1107-1108
    • /
    • 2024
  • 4차 산업혁명 시대에 AI 기술의 발전과 함께, 고속 데이터 전송을 위한 6G의 필요성이 대두되고 있으며, 이는 다양한 산업 분야에 큰 영향을 미칠 것으로 기대된다. 그러나 현재의 채널 디코딩 방식인 LDPC 및 BCH 코드 알고리즘은 복잡한 연산으로 인해 실시간 통신에 지연을 초래할 수 있다. GNN은 노드 간의 복잡한 관계를 효과적으로 학습할 수 있어, 통신 채널 특성을 이해하고 예측하는데 유리하다. 본 연구에서는 6G 통신 기술에 접목하기 위해, 기존 디코딩 방식보다 처리속도가 빠르고 비트 오류율이 낮은 그래프 신경망 기반 채널 디코딩 모델 개발을 목표로 한다.

  • PDF

Strategies for Enhancing Code Generation LLM Performance through Automated Feedback (자동화된 피드백을 통한 코드 생성 LLM 성능 향상 전략)

  • Miseon Yu;Yunheung Peak
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.738-740
    • /
    • 2024
  • 최근 몇 년간 대규모 언어 모델(LLM)은 자연어 처리(NLP) 분야에서 인간의 언어를 이해하고 생성하는 능력으로 큰 주목을 받아왔다. 초기에는 텍스트 생성, 번역, 질의응답 시스템과 같은 작업에 주로 사용되었으나, 최근에는 코드 생성과 같은 복잡한 기술 작업에도 응용되고 있다. 그러나 LLM 이 생성한 코드는 문법적 오류, 논리적 결함, 실행 불가능한 문제 등 다양한 문제점을 포함할 수 있다. 이러한 문제를 해결하기 위해 LLM 이 스스로 코드를 검증하고 개선할 수 있는 자동화 피드백 시스템이 주목받고 있다. 본 논문에서는 코드 생성 LLM 의 성능을 향상시키기 위한 주요 자동화 피드백 메커니즘들을 분석한다. 이러한 자동화 피드백 시스템은 소프트웨어 개발 과정을 자동화하고 최적화하는 데 중요한 역할을 할 수 있으며, 향후 연구에서는 이 시스템의 정교화 및 코드 생성 분야에서의 확장 가능성에 대한 탐구가 필요할 것이다.

  • PDF

Analysis of the Correlation Between Online Community Sentiment and Cryptocurrency Volatility Using Language Models (언어 모델을 활용한 온라인 커뮤니티 정서와 가상화폐 변동성 간의 상관관계 분석)

  • Hojun Lim;Seungshik Kang
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.537-538
    • /
    • 2024
  • 뉴스 내용과 증시의 상관관계에 대해서는 다양한 연구가 활발히 진행되었다. 이러한 연구들은 뉴스 제목에 담긴 정보와 증시 변동 사이의 관계를 분석하여 유의미한 결과를 도출하였다. 그에 반해, 직접적으로 드러나는 대중의 반응과 증시의 상관관계에 대해서는 상대적으로 연구가 부족한 실정이다. 본 연구에서는 여러 시간 단위에서 대중들의 반응을 온라인 커뮤니티에서 추출하고, 감정 분석을 통해 수치화 하여 분석한다. 이렇게 수치화 된 감정 데이터가 가상화폐 변동성과 관련이 있는지에 대해 시간 단위 별 상관관계 분석을 통해 알아보고자 한다. 이를 통해 대중의 반응이 가상화폐 시장에 미치는 영향을 실증적으로 분석하고, 가상화폐 시장에 대한 이해도를 높이는 데 기여할 수 있을 것으로 기대한다.

  • PDF