Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.557-558
/
2022
본 논문에서는 인공신경망을 통해 화면에 투영된 거품입자를 효율적으로 생성할 수 있는 기법에 대해 소개한다. 유체 시뮬레이션 기반으로 바다거품을 계산하기 위해서는 유체역학과 수치해석학에 대한 이해가 필요하며, 유속의 유기물, 풍속 등 다양한 물리적 요소를 고려해야하기 때문에 복잡하고 계산양이 커진다. 오일러리안(Eulerian)접근법에서는 격자의 해상도가 커지게 되고, 라그랑지안(Lagrangian)접근법에서는 입자의 개수가 많아지기 때문에 이 문제를 다루기 쉽지 않은 문제이다. 이러한 문제를 완화하기 위해 본 논문에서는 인공신경망을 이용한 분류 모델 학습을 통해 3차원 유체 시뮬레이션으로부터 투영된 2차원 스크린 이미지로부터 거품이 생성될 위치를 예측한다. 결과적으로 물의 스크린에 투영된 물 입자의 깊이와 가속도로부터 거품의 생성 위치를 예측함으로서 복잡한 수치해석학 없이 학습을 통해 효율적으로 거품을 표현하는 결과를 보여준다.
최근 사법분야에 지능형 법률 서비스를 제공하게 되면서 학습데이터로서 판결문의 중요성이 높아지고 있다. 그중 범죄사실은 수사자료와 유사하여 범죄수사에 귀중한 자료역할을 하고 있지만, 주체가 생략되거나 긴 문장의 형태로 인해 구성요건을 추출하고 사건의 인과관계 파악이 어려울 수 있어 이를 분석하는데 적지 않은 시간과 인력이 소비될 수밖에 없다. 따라서, 본 논문에서는 사전학습모델을 활용한 개체명 인식과 형태소 분석기반 이벤트 추출기법을 범죄사건 재구성에 적용하여 핵심 사건추출을 간편화하고 시각적으로 표현해 전체적인 사건 흐름 이해도를 향상할 수 있는 방법론을 제안하고자 한다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.596-599
/
2023
본 연구는 브랜드가 시장 트렌드를 파악하고 이를 활용하여 경쟁 우위를 확보하고 성장하는 방법을 탐구하고 있다. 이를 위해 세 가지 핵심 요소를 고려하였다. 첫째, 시장의 트렌드 정보를 파악하기 위해 검색 포털 사이트의 검색어 랭킹 정보를 활용하였다. 둘째, 브랜드 상품과 트렌드의 연관성을 분석하기 위해 상품 타이틀과 리뷰 데이터를 활용하였다. 셋째, 각 상품의 브랜드 중요성을 추정하기 위해 리뷰 수, 리뷰 길이, 표현의 다양성 등을 고려했다. 연구 결과, 브랜드는 시장 트렌드를 더욱 정확하게 이해하고 파악함으로써 경쟁 우위를 확보하고 성장할 수 있는 기회를 제공함을 확인하였다. 더불어, 이를 통해 브랜드는 소비자의 요구를 더욱 효과적으로 충족시키고 고객 경험을 개선하는데 기여할 수 있을 것으로 기대된다.
기술이 발전함에 따라 복합적인 모달리티 정보를 포함하는 멀티미디어 데이터의 수집이 용이해지면서, 사람의 성격 특성을 이해하고 이를 개인화된 에이전트에 적용하고자 하는 연구가 활발히 진행되고 있다. 본 논문에서는 비디오 스트림 구조를 활용하여 사용자 특성을 예측하기 위한 동적 키프레임 추출 방법을 제안한다. 비디오 데이터를 효과적으로 활용하기 위해서는 무작위로 선택한 프레임에서 특징을 추출하던 기존의 방법을 개선하여 영상 내 시간에 따른 정보와 변화량을 기반으로 중요한 프레임을 선택하는 방법이 필요하다. 본 논문에서는 제 3자가 평가한 Big-five 지표 값이 레이블링된 대표적인 데이터셋인 First Impressions V2 데이터셋을 사용하여 외면에서 발현되는 특징들을 기반으로 영상에서 등장하는 인물들의 성격 특성을 예측했다. 결론에서는 선택된 키프레임에서 멀티 모달리티 정보를 조합하여 성격 특성을 예측한 결과와 베이스라인 모델과의 성능을 비교한다.
영어 교육 시장 확대로 다양한 영어 학습 시스템이 개발되고 있다. 그러나 어휘의 문맥적 이해와 효과적인 학습 방법을 결합한 지능형 어휘 학습 시스템에 대한 연구는 미비하다. 본 연구에서는 임의의 n 개 영어 단어가 한 그룹으로 제시되고, 이들을 모두 포함한 예문을 제공하는 지능형 영어 어휘 학습 시스템을 개발한다. 본 연구에서는 임의의 n 개 영어 단어가 주어졌을 때 문맥에 맞는 영어 예문을 자동으로 생성하는 모델을 개발하였다. 어휘 평가를 바탕으로 자동으로 취약 어휘를 선정하며 학습자들이 해당 어휘를 학습 할 수 있도록 진행한다. 본 연구에서 개발한 지능형 영어 어휘 학습 시스템의 사용성 평가를 위해 설문 검사를 실시하였다. 설문 결과는 문맥 및 어휘 그룹 기반의 지능형 영어 학습 시스템은 사용자들이 사용하기 편리하고 어휘 능력을 향상시키는데 도움이 될 수 있음을 보여준다.
대량 문자서비스를 통한 스팸 문자가 계속 증가하면서 이로 인해 도박, 불법대출 등의 광고성 스팸 문자에 의한 피해가 지속되고 있다. 이러한 문제점을 해결하기 위해 다양한 방법들이 연구되어 왔지만 기존의 방법들은 주로 사전 정의된 키워드나 자주 나오는 단어의 출현 빈도수를 기반으로 스팸 문자를 검출한다. 이는 광고성 문자들이 시스템에서 자동으로 필터링 되는 것을 회피하기 위해 비정상 문자를 조합하여 스팸 문자의 주요 키워드를 의도적으로 변형해 표현하는 경우에는 탐지가 어렵다는 한계가 있다. 따라서, 본 논문에서는 이러한 문제점을 해결하기 위해 딥러닝 기반 객체 탐지 및 OCR 기술을 활용하여 스팸 문자에 사용된 변형된 문자열을 정상 문자열로 복원하고, 변환된 정상 문자열을 문장 수준 이해를 기반으로 하는 자연어 처리 모델을 이용해 스팸 문자 콘텐츠를 분류하는 방법을 제안한다. 그리고 기존 스팸 필터링 시스템에 가장 많이 사용되는 키워드 기반 필터링, 나이브 베이즈를 적용한 방식과의 비교를 통해 성능 향상이 이루어짐을 확인하였다.
Duk-Young Kim;Hyun-Ji Kim;Hyun-Jun Kim;Hwa-Jeong Seo
Annual Conference of KIPS
/
2024.05a
/
pp.192-195
/
2024
최근 빠른 속도로 개발되고 있는 인공지능 기술은 여러 산업 분야에서 활용 되고 있다. 그러나 최근 딥러닝 네트워크에 대한 부채널 공격 기법들이 등장하고 있으며, 이는 해당 모델을 재구현하여 자율 주행 자동차에 대한 해킹 등과 같이 치명적인 보안 위협이 될 수 있으므로 이에 대한 이해와 대응책이 필요하다. 본 논문에서는 딥러닝 네트워크에 대한 부채널 공격 기법 동향에 대해 살펴보고, 이에 대한 대응 기술 또한 함께 알아본다.
Younghyeon Kim;Hyeok Joo;Eunsoo Kim;Yongho Ahn;Hyeong jeong Yang
Annual Conference of KIPS
/
2024.10a
/
pp.1107-1108
/
2024
4차 산업혁명 시대에 AI 기술의 발전과 함께, 고속 데이터 전송을 위한 6G의 필요성이 대두되고 있으며, 이는 다양한 산업 분야에 큰 영향을 미칠 것으로 기대된다. 그러나 현재의 채널 디코딩 방식인 LDPC 및 BCH 코드 알고리즘은 복잡한 연산으로 인해 실시간 통신에 지연을 초래할 수 있다. GNN은 노드 간의 복잡한 관계를 효과적으로 학습할 수 있어, 통신 채널 특성을 이해하고 예측하는데 유리하다. 본 연구에서는 6G 통신 기술에 접목하기 위해, 기존 디코딩 방식보다 처리속도가 빠르고 비트 오류율이 낮은 그래프 신경망 기반 채널 디코딩 모델 개발을 목표로 한다.
최근 몇 년간 대규모 언어 모델(LLM)은 자연어 처리(NLP) 분야에서 인간의 언어를 이해하고 생성하는 능력으로 큰 주목을 받아왔다. 초기에는 텍스트 생성, 번역, 질의응답 시스템과 같은 작업에 주로 사용되었으나, 최근에는 코드 생성과 같은 복잡한 기술 작업에도 응용되고 있다. 그러나 LLM 이 생성한 코드는 문법적 오류, 논리적 결함, 실행 불가능한 문제 등 다양한 문제점을 포함할 수 있다. 이러한 문제를 해결하기 위해 LLM 이 스스로 코드를 검증하고 개선할 수 있는 자동화 피드백 시스템이 주목받고 있다. 본 논문에서는 코드 생성 LLM 의 성능을 향상시키기 위한 주요 자동화 피드백 메커니즘들을 분석한다. 이러한 자동화 피드백 시스템은 소프트웨어 개발 과정을 자동화하고 최적화하는 데 중요한 역할을 할 수 있으며, 향후 연구에서는 이 시스템의 정교화 및 코드 생성 분야에서의 확장 가능성에 대한 탐구가 필요할 것이다.
뉴스 내용과 증시의 상관관계에 대해서는 다양한 연구가 활발히 진행되었다. 이러한 연구들은 뉴스 제목에 담긴 정보와 증시 변동 사이의 관계를 분석하여 유의미한 결과를 도출하였다. 그에 반해, 직접적으로 드러나는 대중의 반응과 증시의 상관관계에 대해서는 상대적으로 연구가 부족한 실정이다. 본 연구에서는 여러 시간 단위에서 대중들의 반응을 온라인 커뮤니티에서 추출하고, 감정 분석을 통해 수치화 하여 분석한다. 이렇게 수치화 된 감정 데이터가 가상화폐 변동성과 관련이 있는지에 대해 시간 단위 별 상관관계 분석을 통해 알아보고자 한다. 이를 통해 대중의 반응이 가상화폐 시장에 미치는 영향을 실증적으로 분석하고, 가상화폐 시장에 대한 이해도를 높이는 데 기여할 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.