Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.2
/
pp.199-206
/
2022
A malfunction or breakdown of a manufacturing facility leads to product defects and the suspension of production lines, resulting in huge financial losses for manufacturers. Due to the spread of smart factory services, a large amount of data is being collected in factories, and AI-based research is being conducted to predict and diagnose manufacturing facility breakdowns or manufacturing site efficiency. However, because of the characteristics of manufacturing data, such as a severe class imbalance about abnormalities and ambiguous label information that distinguishes abnormalities, developing classification or anomaly detection models is highly difficult. In this paper, we present an deep learning algorithm for anomaly detection of a manufacturing facility using reconstruction loss of CNN-based model and ananlyze its performance. The algorithm detects anomalies by relying solely on normal data from the facility's manufacturing data in the exclusion of abnormal data.
본 연구에서는 FTA 및 퍼지 FTA 방법을 프로그래밍이 용이한 규칙-기반 지식 표현 방법으로 프로그래밍을 설계하기 위한 것으로, FAT 방법에 필요한 전문지식들을 처 리하기 위하여 객체지향 접근방법으로 FTA 를 설계하였다. FTA의 구성요소들에 대한 자료구조는 다음과 같이 세가지 형태로 분류할 수 있다. 1)구성요소들의 자료구조가 확정적인 값으로 나타나는 경우 2)구성요소들의 자료구조가 부정확한 값으로 나타나는 경우 3)구성요소들의 자료구조가 확정적인 값 및 부정확한값으로 동시에 주어진 경우로 나타날 수 있다. 본 연구에서는 객체지향적 펴지 FTA 전문가 시스템(FFTAES: Fuzzy FTA Expert System)을 활용하여 세 번째 형태인 구성요소들의 자료구조가 확정적인 값 및 부 정확한 값이 동시에 주어진 경우를 정량적으로 고장안전진단을 실시할 수 있도록 설계 하였다.
The Transactions of The Korean Institute of Electrical Engineers
/
v.57
no.10
/
pp.1847-1853
/
2008
This paper presents stochastic methodology based fault detection algorithm for induction motor systems. We measure current of healthy induction motors by means of hall sensor systems and then establish its probability distribution. We propose online probability density estimation which is effective in real-time implementation due to its simplicity and low computational burden. In addition, we accomplish theoretical analysis to demonstrate convergence property of the proposed estimation by using statistical convergence and system stability theory. We apply our fault diagnosis approach to three-phase induction motors and achieve real-time experiment for evaluating its reliability and practicability in industrial fields.
Kim, Kwang-Su;Lee, Young-Jin;Song, Xian-Hui;Lee, Kwon-Soon
Proceedings of the KIEE Conference
/
2008.04b
/
pp.171-173
/
2008
This paper presents stochastic methodology based fault diction and diagnosis algorithm for induction motor systems. First, we construct probability distribution model from healthy motors and then probability distribution for faulty motors is recursively calculated by means of the proposed probability estimation. We measure motor current with hall sensors as system state. The estimated probability is compared to the model to generate a residue signal which is utilized for fault detection and diagnosis, that is, where a fault is occurred. We carry out real-time induction motor experiment to evaluate efficiency and reliability of the proposed approach.
Park, Tae-Geun;Kwak, Ki-Seok;Yoon, Tae-Sung;Park, Jin-Bae
Proceedings of the KIEE Conference
/
2005.05a
/
pp.24-26
/
2005
At present, KS-1000 which is one of a commercial measurement instrument for motor fault diagnosis has been used in industrial field. The measurement system of KS-1000 is composed of three part : harmonic acquisition, signal processing by KS-1000 algorithm, diagnosis for motor fault. First of all, voltage signal taken from harmonic sensor is analysed for frequency by KS-1000 algorithm. Then, based on the result values of analysis skilled expert makes a judgment about whether motor system is the abnormality or degradation state. But the expert system such a motor fault diagnosis is very difficult to bring the expectable results by mathematical modeling due to the complexity of judgment process. In this reason, we propose an automation system using fuzzy model based on genetic algorithm(GA) that builded a qualitative model of a system without priori knowledge about a system provided numerical input output data.
This paper presents a new FDI scheme based on dynamic fuzzy model(DFM) for the nonlinear system. The dynamic behavior of a nonlinear system is represented by a set of local linear models. The parameters of the DFM are identified in on-line and aggregated to generate a residual vector by the approximate reasoning. The neural network classifer learns the relationship between the residual vector and fault type and used both for the detection and isolation of process faults We apply the proposed FDI scheme to the FDI system design for a two-tank system and show the usefulness of the proposed scheme.
The Transactions of the Korean Institute of Electrical Engineers P
/
v.65
no.1
/
pp.41-46
/
2016
It has been proven that the dissolved gas analysis (DGA) is the most effective and convenient method to diagnose the transformers. The DGA is a simple, inexpensive, and non intrusive technique. Among the various diagnosis methods, IEC 60599 has been widely used in transformer in service. But this method cannot offer accurate diagnosis for all the faults. This paper proposes a fault diagnosis method of oil-filled power transformers using IEC code based neuro-fuzzy model. The proposed method proceeds two steps. First, IEC 60599 method is applied to diagnosis. If IEC code can't determine the fault type, neuro-fuzzy model is applied to effectively classify the fault type. To demonstrate the validity of the proposed method, experiment is performed and its results are illustrated.
This paper presents stochastic methodology based fault diction and diagnosis algorithm for induction motor systems. First, we construct probability distribution model from healthy motors and then probability distribution for faulty motors is recursively calculated by means of the proposed probability estimation. We measure motor current with hall sensors as system state. The estimated probability is compared to the model to generate a residue signal which is utilized for fault detection and diagnosis, that is, where a fault is occurred. We carry out real-time induction motor experiment to evaluate efficiency and reliability of the proposed approach.
태양광발전소를 설치하기 위한 경제적 타당성을 분석하는 경우 기상청에서 제공하는 해당지역의 날씨정보를 기반으로 하는 PV Cell의 연간 발전량 예측 및 분석이 중요한 변수가 된다. 또한 날씨 조건에 대한 PV 발전의 예측은 기 설치되어 운전중에 있는 태양광발전소의 고장진단 및 성능평가에도 사용될 수 있다. 본 논문은 다양한 날씨 조건 중 주변온도, 풍속, 일사량에 따른 PV Cell의 특성을 분석하고, 실시간으로 변화하는 날씨환경에 대하여 순시적으로 PV Cell의 출력특성을 정확히 예측할 수 있는 모델을 수립한다.
Journal of the Korea Institute of Military Science and Technology
/
v.24
no.4
/
pp.457-466
/
2021
This paper describes the design of model-based fault diagnosis software to apply to the propulsion system in tracked amphibious assault vehicle which consists of an engine, a transmission, a cooling system, and two waterjets. This software includes specific functions to detect the failures regarding sensor malfunctions, mechanical malfunctions, control errors, and communication errors. This software generates the proper malfunction codes which are classified as the warning and caution. In order to validate the fault diagnosis software, the manual and automatic test are performed using the test program with 32 test cases. Test results show that the designed fault diagnosis software is reliable and effective for applying to the propulsion system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.