KIPS Transactions on Software and Data Engineering
/
v.7
no.10
/
pp.387-396
/
2018
Stock price prediction has been a difficult problem to solve. There have been many studies to predict stock price scientifically, but it is still impossible to predict the exact price. Recently, a variety of types of cryptocurrency has been developed, beginning with Bitcoin, which is technically implemented as the concept of distributed ledger. Various approaches have been attempted to predict the price of cryptocurrency. Especially, it is various from attempts to stock prediction techniques in traditional stock market, to attempts to apply deep learning and reinforcement learning. Since the market for cryptocurrency has many new features that are not present in the existing traditional stock market, there is a growing demand for new analytical techniques suitable for the cryptocurrency market. In this study, we first collect and process seven cryptocurrency price data through Bithumb's API. Then, we use the gradient boosting model, which is a data-driven learning based machine learning model, and let the model learn the price data change of cryptocurrency. We also find the most optimal model parameters in the verification step, and finally evaluate the prediction performance of the cryptocurrency price trends.
The Journal of Korean Institute of Communications and Information Sciences
/
v.34
no.5B
/
pp.542-551
/
2009
We proposed the context based user profile which is aware of its user's situation and based on user's situation it recommends personalized services. The user profile which consists of (context, service) pair can be acquired by the context and the service usage of a user; it then can be used to recommend personalized services for the user. In this paper, we show how they can be evolved without previously known user information so that not to violate privacy during the learning phase; in the result our user profile can be applied to any new environment without any modification to model only except context profiles. Using context-awareness based user profile, the service usage pattern of a user can be learned by the union of contexts and the preferred services can be recommended by the current environments. Finally, we evaluate the precision of proposed approach using simulation with data sets of UCI depository and Weka tool-kit.
Journal of the Korea Society of Computer and Information
/
v.27
no.12
/
pp.251-258
/
2022
This study aims to provide basic data for reinforcing the learning competency of paramedic students by analyzing the performance, importance, and demand for the major curriculum of them. The participants of the study was 217 students from the Department of Emergency medical technology from 3 universities in Chungnam, and the survey data collection period was from December 13 to December 24, 2021. As a result of the study, 'Education for Ambulance management', 'Education for maintaining professionalism after graduation', 'Education for In-hospital patient monitoring' are highly required by Borich need, and 'Education for medical oder from a doctor, Education for han dover to In-hospital medical staff', 'Education for non-traumatic emergency patient treatment', 'Education for In-hospital patient monitoring', and 'Education for In-hospital medical assistance' are the top priority areas of the LF model. It is judged that it is necessary to reinforce the curriculum corresponding to in order to strengthen the learning capabilities of paramedic students.
Journal of The Korean Association of Information Education
/
v.18
no.2
/
pp.225-234
/
2014
Robot programming allows students to plan an algorithm in order to solve a task, implement the algorithm, easily confirm the results of the implementation with a robot, and correct errors. Thus, robot programming is a problem solving process based on reflective thinking, and is closely related to students' metacognition. On this point, this research is conducted to develop a robot programming instructional model for tile enhancement of students' metacognition. The instructional processes of robot programming are divided into 5 stages (i.e., 'exploration of learning tasks', 'a teacher's modeling', 'preparation of a plan for task performance along with the visualization of the plan', 'task performance', and 'self-evaluation and self-reinforcement'), and core strategies of metacognition (i.e., planning, monitering, regulating, and evaluating) are suggested for students' activities in each stage. Also, in order to support students' programming activities and the use of metacognition, instructional strategies based on cognitive apprenticeship (i.e. modeling, coaching and scaffolding) are suggested in relation to the instructional model. In addition, in order to support students' metacognitive activities. the model is designed to use self-questioning, and questions that students can use at each stage of the model are presented.
Recently, as the ICT field has been used in various environments, it has become possible to analyze pests by crops, use robots when harvesting crops, and predict by big data by utilizing ICT technologies in a sustainable agricultural environment. However, in a sustainable agricultural environment, efforts to solve resource depletion, agricultural population decline, poverty increase, and environmental destruction are constantly being demanded. This paper proposes an artificial intelligence-based big data processing analysis method to reduce the production cost and increase the efficiency of crops based on a sustainable agricultural environment. The proposed technique strengthens the security and reliability of data by processing big data of crops combined with AI, and enables better decision-making and business value extraction. It can lead to innovative changes in various industries and fields and promote the development of data-oriented business models. During the experiment, the proposed technique gave an accurate answer to only a small amount of data, and at a farm site where it is difficult to tag the correct answer one by one, the performance similar to that of learning with a large amount of correct answer data (with an error rate within 0.05) was found.
KIPS Transactions on Software and Data Engineering
/
v.12
no.9
/
pp.407-418
/
2023
The Multi-Object Goal Visual Navigation(MultiOn) is a visual navigation task in which an agent must visit to multiple object goals in an unknown indoor environment in a given order. Existing models for the MultiOn task suffer from the limitation that they cannot utilize an integrated view of multimodal context because use only a unimodal context map. To overcome this limitation, in this paper, we propose a novel deep neural network-based agent model for MultiOn task. The proposed model, MCFMO, uses a multimodal context map, containing visual appearance features, semantic features of environmental objects, and goal object features. Moreover, the proposed model effectively fuses these three heterogeneous features into a global multimodal context map by using a point-wise convolutional neural network module. Lastly, the proposed model adopts an auxiliary task learning module to predict the observation status, goal direction and the goal distance, which can guide to learn the navigational policy efficiently. Conducting various quantitative and qualitative experiments using the Habitat-Matterport3D simulation environment and scene dataset, we demonstrate the superiority of the proposed model.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.17
no.6
/
pp.121-132
/
2018
Weather is an important factor affecting roadway transportation in many aspects such as traffic flow, driver 's driving patterns, and crashes. This study focuses on the relationship between weather and road surface condition and develops a model to estimate the road surface condition using machine learning. A road surface sensor was attached to the probe vehicle to collect road surface condition classified into three categories as 'dry', 'moist' and 'wet'. Road geometry information (curvature, gradient), traffic information (link speed), weather information (rainfall, humidity, temperature, wind speed) are utilized as variables to estimate the road surface condition. A variety of machine learning algorithms examined for predicting the road surface condition, and a two - stage classification model based on 'Random forest' which has the highest accuracy was constructed. 14 days of data were used to train the model and 2 days of data were used to test the accuracy of the model. As a result, a road surface state prediction model with 81.74% accuracy was constructed. The result of this study shows the possibility of estimating the road surface condition using the existing weather and traffic information without installing new equipment or sensors.
Journal of The Korean Association For Science Education
/
v.36
no.1
/
pp.29-43
/
2016
There have been much efforts to reconstruct the science curriculum focusing on Disciplinary Core Ideas(DCI) in many countries such as America and Europe, the most practical effort has been to design a curriculum with learning progressions(LPs). LPs describe stepwise how students can systematically move toward the understanding of more sophisticated ideas or scientific activities and explain in succession the process of understanding the ideas while the students learn. In this study, a LP for ecosystems has been developed, and the developed LP is then evaluated accordingly. The Ecosystem is one of the DCI of the life science in Next Generation Science Standards(NGSS). The development process of the LP was set at step 4(Development, Assessment, Analysis, and Amendment), and developed through an iterative process of sequences. As a result of analyzing the developed LP, an assessment based on the LP provides reliable information to identifying student ability. This study proposes the development process of the LP and its methodological aspects to use Core Achievement Standards, Ordered Multiple-Choice items and the Rasch model. In addition, using the empirically proven LP suggests a way of strengthening curriculum linked to educational content, teaching methods and assessment. Utilizing the proposed development process in this study will be to present the standard into the direction of becoming part of the curriculum. Currently, the state of domestic research for the LP is still lacking. This study determined the development process of the LP and the need to conduct future research on the LPs.
With the advent of the 4th industrial revolution, the need for artificial intelligence education has increased. The online learning environment caused by COVID-19 made it possible to use variety of artificial intelligence platforms. In this study, an aritificial intelligence class plan was developed and proposed to achieve the goal of artificial intelligence education using an AI platform. The AI platform used is AI for Oceans, With the theme of creating a program for the environment, designed a 6-hour project class using Novel Engineering-based on STEAM model. Students experience AI for Oceans enough time and learn supervised learning by experience. Based on understanding of supervised learning, students design their own programs for the environment using Entry's AI blocks. In this study, for AI convergence education, this lesson was developed and presented with the goal of acquiring the creative problem solving ability and integrated thinking ability by using the principles of artificial intelligence to solve problems.
The purpose of this study was to analysis of PBL for Korean Apprenticeship Program in Mechanical Engineering. The details of the study were as follows: First, the perception related to the PBL of Korean apprenticeship program was investigated. Second, the utilization and the operational difficulties of PBL for Korean Apprenticeship Program were investigated. Third, the supporting system for PBL was suggested. Research methods were literature research, questionnaire survey and FGI. The survey was conducted online from July 15 to August 14, 2021. A total of 515 respondents responded. A total of 108 in 515 respondents were in Mechanical Engineering. FGI conducted a total of 25 people who actual use PBL in the field of Korean Apprenticeship Program. Conclusions and suggestions based upon the result of this study are as follows. First, It is necessary to improve the utilization of PBL for Korean Apprenticeship Program in Industry. Second, PBL is necessary to apply optionally according to the job and field situation. Third, it is necessary to support system of evaluation for PBL in Korean Apprenticeship Program. Finally, related operation model and guideline need to be prepared for best practice.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.