• Title/Summary/Keyword: 모델 기반 강화 학습

Search Result 168, Processing Time 0.023 seconds

Prediction of Cryptocurrency Price Trend Using Gradient Boosting (그래디언트 부스팅을 활용한 암호화폐 가격동향 예측)

  • Heo, Joo-Seong;Kwon, Do-Hyung;Kim, Ju-Bong;Han, Youn-Hee;An, Chae-Hun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.10
    • /
    • pp.387-396
    • /
    • 2018
  • Stock price prediction has been a difficult problem to solve. There have been many studies to predict stock price scientifically, but it is still impossible to predict the exact price. Recently, a variety of types of cryptocurrency has been developed, beginning with Bitcoin, which is technically implemented as the concept of distributed ledger. Various approaches have been attempted to predict the price of cryptocurrency. Especially, it is various from attempts to stock prediction techniques in traditional stock market, to attempts to apply deep learning and reinforcement learning. Since the market for cryptocurrency has many new features that are not present in the existing traditional stock market, there is a growing demand for new analytical techniques suitable for the cryptocurrency market. In this study, we first collect and process seven cryptocurrency price data through Bithumb's API. Then, we use the gradient boosting model, which is a data-driven learning based machine learning model, and let the model learn the price data change of cryptocurrency. We also find the most optimal model parameters in the verification step, and finally evaluate the prediction performance of the cryptocurrency price trends.

Context Based User Profile for Personalization in Ubiquitous Computing Environments (유비쿼터스 컴퓨팅 환경에서 개인화를 위한 상황정보 기반 사용자 프로파일)

  • Moon, Ae-Kyung;Kim, Hyung-Hwan;Park, Ju-Young;Choi, Young-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5B
    • /
    • pp.542-551
    • /
    • 2009
  • We proposed the context based user profile which is aware of its user's situation and based on user's situation it recommends personalized services. The user profile which consists of (context, service) pair can be acquired by the context and the service usage of a user; it then can be used to recommend personalized services for the user. In this paper, we show how they can be evolved without previously known user information so that not to violate privacy during the learning phase; in the result our user profile can be applied to any new environment without any modification to model only except context profiles. Using context-awareness based user profile, the service usage pattern of a user can be learned by the union of contexts and the preferred services can be recommended by the current environments. Finally, we evaluate the precision of proposed approach using simulation with data sets of UCI depository and Weka tool-kit.

Analysis of paramedic students' needs for the major theme of emergency medical technology Using Borich need assessment and The Locus for focus model

  • Ahn, Hee-Jeong;Shim, Gyu-Sik;Lee, Hyo-Ju;Han, Song-Yi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.251-258
    • /
    • 2022
  • This study aims to provide basic data for reinforcing the learning competency of paramedic students by analyzing the performance, importance, and demand for the major curriculum of them. The participants of the study was 217 students from the Department of Emergency medical technology from 3 universities in Chungnam, and the survey data collection period was from December 13 to December 24, 2021. As a result of the study, 'Education for Ambulance management', 'Education for maintaining professionalism after graduation', 'Education for In-hospital patient monitoring' are highly required by Borich need, and 'Education for medical oder from a doctor, Education for han dover to In-hospital medical staff', 'Education for non-traumatic emergency patient treatment', 'Education for In-hospital patient monitoring', and 'Education for In-hospital medical assistance' are the top priority areas of the LF model. It is judged that it is necessary to reinforce the curriculum corresponding to in order to strengthen the learning capabilities of paramedic students.

Development of a Robot Programming Instructional Model based on Cognitive Apprenticeship for the Enhancement of Metacognition (메타인지 발달을 위한 인지적 도제 기반의 로봇 프로그래밍 교수.학습 모형 개발)

  • Yeon, Hyejin;Jo, Miheon
    • Journal of The Korean Association of Information Education
    • /
    • v.18 no.2
    • /
    • pp.225-234
    • /
    • 2014
  • Robot programming allows students to plan an algorithm in order to solve a task, implement the algorithm, easily confirm the results of the implementation with a robot, and correct errors. Thus, robot programming is a problem solving process based on reflective thinking, and is closely related to students' metacognition. On this point, this research is conducted to develop a robot programming instructional model for tile enhancement of students' metacognition. The instructional processes of robot programming are divided into 5 stages (i.e., 'exploration of learning tasks', 'a teacher's modeling', 'preparation of a plan for task performance along with the visualization of the plan', 'task performance', and 'self-evaluation and self-reinforcement'), and core strategies of metacognition (i.e., planning, monitering, regulating, and evaluating) are suggested for students' activities in each stage. Also, in order to support students' programming activities and the use of metacognition, instructional strategies based on cognitive apprenticeship (i.e. modeling, coaching and scaffolding) are suggested in relation to the instructional model. In addition, in order to support students' metacognitive activities. the model is designed to use self-questioning, and questions that students can use at each stage of the model are presented.

Blockchain and AI-based big data processing techniques for sustainable agricultural environments (지속가능한 농업 환경을 위한 블록체인과 AI 기반 빅 데이터 처리 기법)

  • Yoon-Su Jeong
    • Advanced Industrial SCIence
    • /
    • v.3 no.2
    • /
    • pp.17-22
    • /
    • 2024
  • Recently, as the ICT field has been used in various environments, it has become possible to analyze pests by crops, use robots when harvesting crops, and predict by big data by utilizing ICT technologies in a sustainable agricultural environment. However, in a sustainable agricultural environment, efforts to solve resource depletion, agricultural population decline, poverty increase, and environmental destruction are constantly being demanded. This paper proposes an artificial intelligence-based big data processing analysis method to reduce the production cost and increase the efficiency of crops based on a sustainable agricultural environment. The proposed technique strengthens the security and reliability of data by processing big data of crops combined with AI, and enables better decision-making and business value extraction. It can lead to innovative changes in various industries and fields and promote the development of data-oriented business models. During the experiment, the proposed technique gave an accurate answer to only a small amount of data, and at a farm site where it is difficult to tag the correct answer one by one, the performance similar to that of learning with a large amount of correct answer data (with an error rate within 0.05) was found.

Multi-Object Goal Visual Navigation Based on Multimodal Context Fusion (멀티모달 맥락정보 융합에 기초한 다중 물체 목표 시각적 탐색 이동)

  • Jeong Hyun Choi;In Cheol Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.407-418
    • /
    • 2023
  • The Multi-Object Goal Visual Navigation(MultiOn) is a visual navigation task in which an agent must visit to multiple object goals in an unknown indoor environment in a given order. Existing models for the MultiOn task suffer from the limitation that they cannot utilize an integrated view of multimodal context because use only a unimodal context map. To overcome this limitation, in this paper, we propose a novel deep neural network-based agent model for MultiOn task. The proposed model, MCFMO, uses a multimodal context map, containing visual appearance features, semantic features of environmental objects, and goal object features. Moreover, the proposed model effectively fuses these three heterogeneous features into a global multimodal context map by using a point-wise convolutional neural network module. Lastly, the proposed model adopts an auxiliary task learning module to predict the observation status, goal direction and the goal distance, which can guide to learn the navigational policy efficiently. Conducting various quantitative and qualitative experiments using the Habitat-Matterport3D simulation environment and scene dataset, we demonstrate the superiority of the proposed model.

Estimation of Road Surface Condition during Summer Season Using Machine Learning (기계학습을 통한 여름철 노면상태 추정 알고리즘 개발)

  • Yeo, jiho;Lee, Jooyoung;Kim, Ganghwa;Jang, Kitae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.121-132
    • /
    • 2018
  • Weather is an important factor affecting roadway transportation in many aspects such as traffic flow, driver 's driving patterns, and crashes. This study focuses on the relationship between weather and road surface condition and develops a model to estimate the road surface condition using machine learning. A road surface sensor was attached to the probe vehicle to collect road surface condition classified into three categories as 'dry', 'moist' and 'wet'. Road geometry information (curvature, gradient), traffic information (link speed), weather information (rainfall, humidity, temperature, wind speed) are utilized as variables to estimate the road surface condition. A variety of machine learning algorithms examined for predicting the road surface condition, and a two - stage classification model based on 'Random forest' which has the highest accuracy was constructed. 14 days of data were used to train the model and 2 days of data were used to test the accuracy of the model. As a result, a road surface state prediction model with 81.74% accuracy was constructed. The result of this study shows the possibility of estimating the road surface condition using the existing weather and traffic information without installing new equipment or sensors.

Developing and Assessing a Learning Progression for the Ecosystem (생태계에 대한 학습발달과정의 개발과 평가)

  • Yeo, Chaeyeong;Lee, Hyonyong
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.1
    • /
    • pp.29-43
    • /
    • 2016
  • There have been much efforts to reconstruct the science curriculum focusing on Disciplinary Core Ideas(DCI) in many countries such as America and Europe, the most practical effort has been to design a curriculum with learning progressions(LPs). LPs describe stepwise how students can systematically move toward the understanding of more sophisticated ideas or scientific activities and explain in succession the process of understanding the ideas while the students learn. In this study, a LP for ecosystems has been developed, and the developed LP is then evaluated accordingly. The Ecosystem is one of the DCI of the life science in Next Generation Science Standards(NGSS). The development process of the LP was set at step 4(Development, Assessment, Analysis, and Amendment), and developed through an iterative process of sequences. As a result of analyzing the developed LP, an assessment based on the LP provides reliable information to identifying student ability. This study proposes the development process of the LP and its methodological aspects to use Core Achievement Standards, Ordered Multiple-Choice items and the Rasch model. In addition, using the empirically proven LP suggests a way of strengthening curriculum linked to educational content, teaching methods and assessment. Utilizing the proposed development process in this study will be to present the standard into the direction of becoming part of the curriculum. Currently, the state of domestic research for the LP is still lacking. This study determined the development process of the LP and the need to conduct future research on the LPs.

Development of Convergence Educational Program Using AI Platform: Focusing on Environmental Education for Grades 5-6 (인공지능 플랫폼을 활용한 융합수업안 개발 : 5-6학년 환경교육을 중심으로)

  • Choi, Heyoungyun;Shin, Seungki
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.213-221
    • /
    • 2021
  • With the advent of the 4th industrial revolution, the need for artificial intelligence education has increased. The online learning environment caused by COVID-19 made it possible to use variety of artificial intelligence platforms. In this study, an aritificial intelligence class plan was developed and proposed to achieve the goal of artificial intelligence education using an AI platform. The AI platform used is AI for Oceans, With the theme of creating a program for the environment, designed a 6-hour project class using Novel Engineering-based on STEAM model. Students experience AI for Oceans enough time and learn supervised learning by experience. Based on understanding of supervised learning, students design their own programs for the environment using Entry's AI blocks. In this study, for AI convergence education, this lesson was developed and presented with the goal of acquiring the creative problem solving ability and integrated thinking ability by using the principles of artificial intelligence to solve problems.

  • PDF

Analysis of PBL for Korean Apprenticeship Program in Mechanical Engineering (기계분야 일학습병행제에서의 PBL 실태 분석)

  • Chang, Hea Jung;Kang, Seonae
    • Journal of Practical Engineering Education
    • /
    • v.13 no.3
    • /
    • pp.515-532
    • /
    • 2021
  • The purpose of this study was to analysis of PBL for Korean Apprenticeship Program in Mechanical Engineering. The details of the study were as follows: First, the perception related to the PBL of Korean apprenticeship program was investigated. Second, the utilization and the operational difficulties of PBL for Korean Apprenticeship Program were investigated. Third, the supporting system for PBL was suggested. Research methods were literature research, questionnaire survey and FGI. The survey was conducted online from July 15 to August 14, 2021. A total of 515 respondents responded. A total of 108 in 515 respondents were in Mechanical Engineering. FGI conducted a total of 25 people who actual use PBL in the field of Korean Apprenticeship Program. Conclusions and suggestions based upon the result of this study are as follows. First, It is necessary to improve the utilization of PBL for Korean Apprenticeship Program in Industry. Second, PBL is necessary to apply optionally according to the job and field situation. Third, it is necessary to support system of evaluation for PBL in Korean Apprenticeship Program. Finally, related operation model and guideline need to be prepared for best practice.