Proceedings of the Korea Society for Simulation Conference
/
2001.05a
/
pp.55-61
/
2001
본 논문에서는 시뮬레이션 기반 최적화에서 유전자 알고리즘을 이용하여 후보 모델을 자동으로 생성하는 기법을 제안하였다. 이 방법론은 잘 알려진 계획-생성-평가의 틀을 기반으로 구축되었다. 계획은 확장된 AND-OR 트리(AND, OR, Multiple AND 노드를 갖는 트리)를 이용하여 가능한 모든 후보 모델을 표현하였고, 이러한 트리 상에서 후보 모델을 자동생성하기 위하여 유전자 알고리즘을 사용하였다. 마지막으로 생성된 후보 모델을 평가하기 위하여, 시뮬레이션을 수행하였다. 시뮬레이션을 이용한 평가를 통하여 목적에 맞는 후보 모델을 찾을 수 있게 된다. 본 논문에서 제시한 방법론의 효율성은 DSP 프로세서 설계 예제를 통하여 보여주었다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.20
no.4
/
pp.107-113
/
2020
A number of studies have been conducted on predicting software faults, but most of them have been supervised models using labeled data as training data. Very few studies have been conducted on unsupervised models using only unlabeled data or semi-supervised models using enough unlabeled data and few labeled data. In this paper, we produced new semi-supervised models using tree algorithms in the self-training technique. As a result of the model performance evaluation experiment, the newly created tree models performed better than the existing models, and CollectiveWoods, in particular, outperformed other models. In addition, it showed very stable performance even in the case with very few labeled data.
Recognition model is not defined when you configure a model, Been added to the model after model building awareness, Model a model of the clustering due to lack of recognition models are generated by modeling is causes the degradation of the recognition rate. In order to improve decision tree state tying modeling using parameter estimation of Bayesian method. The parameter estimation method is proposed Bayesian method to navigate through the model from the results of the decision tree based on the tying state according to the maximum probability method to determine the recognition model. According to our experiments on the simulation data generated by adding noise to clean speech, the proposed clustering method error rate reduction of 1.29% compared with baseline model, which is slightly better performance than the existing approach.
Fault tree analysis is the most widely used saftly analysis technique in industry. However, the analysis is often applied manually, and there is no systematic and automated approach available to validate the analysis result. In this paper, we demonstrate that a real-time model checker UPPAAL is useful in formally specifying the required behavior of safety-critical software and to validate the accuracy of manually constructed fault trees. Functional requirements for emergency shutdown software for a nuclear power plant, named Wolsung SDS2, are used as an example. Fault trees were initially developed by a group of graduate students who possess detailed knowledge of Wolsung SDS2 and are familiar with safety analysis techniques including fault tree analysis. Functional requirements were manually translated in timed automata format accepted by UPPAAL, and the model checking was applied using property specifications to evaluate the correctness of the fault trees. Our application demonstrated that UPPAAL was able to detect subtle flaws or ambiguities present in fault trees. Therefore, we conclude that the proposed approach is useful in augmenting fault tree analysis.
다변량 퍼지 의사결정트리(이하 MFDT)는 학습 모델의 구조가 간소하고 분류율이 높다는 장점 때문에 일반 퍼지 의사결정트리를 대신해 손동작 인식 시스템의 분류기로 사용되었다. 다양한 사용자의 손동작 특성을 분류하기 위해 여러 개의 인식 모델을 만들고 새로운 사용자에게 가장 적합한 모델을 선택해 사용하는 모델 선택 기법도 손동작 인식에 적용되었다. 모델 선택 과정을 통해 선택된 모델은 기존 모델 중에서 새로운 사용자의 특성에 가장 가깝지만 해당 사용자에 최적화된 모델이라고는 할 수 없다. 이 논문에서는 MFDT 모델을 새로 입력된 데이터를 이용해 적응시키는 방법을 설명하고 실험 결과를 통해 적응 성능을 검증한다.
Piao, Yongjun;Piao, Minghao;Shon, Ho Sun;Ryu, Keun Ho
Annual Conference of KIPS
/
2011.11a
/
pp.1229-1231
/
2011
대량의 분류 규칙 탐사 과정은 앙상블기법을 사용하여 다양한 연구들이 이루어지고 있다. 본 논문에서는 의사결정 트리의 분열 문제와 singleton 포함 한계를 해결하기 위하여 Cascading-and-Sharing 앙상블 기법을 적용하여 점진적 다중 의사결정 트리를 구축하였다. 또한 분류의 정확도를 향상시키고, 트리의 복잡도와 모델 과잉접합을 피하기 위하여 다중 트리 구축과정에서 선형 상관분석기법을 기반으로 훈련 데이터 속성들의 중복성을 제거하였다. 실험 결과, 속성들의 중복성을 제거하여 구축한 트리들은 원래 기법보다 더 좋은 결과를 보여주었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.358-360
/
2012
본 논문에서는 새로운 율모델을 기반으로한 프레임 단위 HEVC 율제어 기법을 제안한다. 기존의 비디오 압축표준과는 달리 HEVC 는 계층 구조를 지닌 쿼드트리 기반 움직임 예측 및 변환 부호화를 수행한다. 본 논문에서는 쿼드트리 계층의 깊이에 따라 신호의 통계적 특성이 매우 달라지는 것은 이용하여 라플라시안 확률 모델을 각 쿼드트리 계층에 독립적으로 이용한 새로운 율모델을 이용한 율제어 기법을 제안한다. 제안방법에서는 계층적 부호화 단위인 CU 를 계층 깊이에 따라 세 가지 카테고리로 분류하고 각 카테고리에 따라 변환 계수에 대한 라플라시안 확률 분포 함수를 율-양자화 모델을 만든다. 제안된 율모델은 특성이 매우 다른 각 CU 깊이에 따라 독립적인 라플라이안 확률 분포 함수를 이용하기 때문에 매우 정확하고 적응적인 비트율 예측이 가능하므로 보다 안정적이고 정확한 율제어가 가능하다. 실험결과는 제안된 율제어 기법이 단일 확률 분포 함수를 사용했을 경우보다 평균 0.16dB 의 PSNR 향상이 있었음을 보여주었으며 제안된 방법은 각 프레임에 대한 목표 비트에 보다 안정적으로 부호화하는 것을 보여주었다.
차세대 웹 문서의 새로운 표준으로 자리 잡아 가고 있는 XML은 전자 상거래나 병원 관리 등과 같이 다양한 응용 분야에 적용되고 있다. 이러한 응용 분야는 XML 문서의 각 구성 요소 수준의 세밀한 액세스 제어를 요구한다. 따라서, 현재 XML 문서의 미세 접근 제어 기법에 대한 연구가 활발히 이루어지고 있다. 현재 제안된 XML 문서를 위한 미세 접근 제어 기법은 대부분 묵시적 권한 기법을 사용하여 상위 구성요소에 한번의 권한 부여로 하위노드에 권한을 부여하는 효과를 가지는 장점을 가지나, 각 구성 요소간의 권한을 체크하는 시간 오버헤드를 가지는 단점이 있다. 본 논문에서는 권한을 체크하는 시간을 감소시키기 위하여 XML 문서의 미세 접근 제어를 위한 명시적 권한 기법을 제안하고, 이를 이용하여 노드의 권한에 대한 모든 정보를 저장하고 있는 접근 권한 트리 모델을 제시하였다. 본 논문에서 제안한 접근 권한 트리 모델을 사용하면, 권한 정보를 저장하는 공간 오버헤드가 있지만, 권한 체크 시간을 감소시켜 사용자에게 보다 빠른 뷰를 제공할 수 있다.
옥트리(octree)는 3차원 물체를 복원함에 있어서 간편함으로 팥이 이용되어지는 방법이다. 하지만 물체의 형태가 복잡해지고 물체 내부에 구멍이 뚫어져 있는 경우 옥트리로 표현된 결과만으로는 형태를 파악하기 어려운 경우가 발생한다. 본 논문은 옥트리를 이용하여 3차원 물체의 형태를 복원하는데 있어서 나타나는 문제점을 옥트리의 계층적 구조를 증가시키지 않고 현실감이 떨어지는 부분에 대해서 CSG모델을 이용하여 해결하는 방안을 제시한다. 옥트리로 만들어진 결과물과 3차원 물체와의 차이가 나는 부분에 대하여 좀 더 현실감을 주기 위하여 CSG모델을 이용하여 기본도형을 만들고, 만들어진 도형을 다시 CSG모델을 이용하여 옥트리로 만들어진 물체에 결합시키는 형태로 문제를 해결한다. 본 논문에서는 실험을 위하여 3차원 물체를 만들고, 이를 옥트리를 이용하여 문제점을 확인하고, 이를 본 논문에서 주장한 방법을 이용하여 해결하는 방안을 제시한다.
Annual Conference on Human and Language Technology
/
1999.10e
/
pp.191-195
/
1999
자연스럽고 명료한 한국어 Text-to-Speech 변환 시스템을 위해서 음소의 지속 시간을 제어하는 일은 매우 중요하다. 음소의 지속 시간은 여러 가지 문맥 정보에 의해서 변화하므로 제어 규칙에 의존하기 보다 방대한 데이터베이스를 이용하여 통계적인 기법으로 음소의 지속 시간에 변화를 주는 요인을 찾아내려고 하는 것이 지금의 추세이다. 본 연구에서도 트리기반 모델링 방법중의 하나인 CART(classification and regression tree) 방법을 사용하여 회귀 트리를 생성하고, 생성된 트리에 기반하여 음소의 지속 시간 예측 모델과, 자연스러운 끊어 읽기를 위한 휴지 기간 예측 모델을 제안하고 있다. 실험에 사용한 음성코퍼스는 550개의 문장으로 구성되어 있으며, 이 중 428개 문장으로 회귀 트리를 학습시켰고, 나머지 122개의 문장으로 실험하였다. 모델의 평가를 위해서 실제값과 예측값과의 상관관계를 구하였더니 음소의 지속 시간을 예측하는 회귀 트리에서는 상관계수가 0.84로 계산되었고, 끊어 읽는 경계에서의 휴지 기간을 예측하는 회귀 트리에서는 상관계수가 0.63으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.