• Title/Summary/Keyword: 모델링 차원

Search Result 2,295, Processing Time 0.031 seconds

A Study on the Establishment of Design and Construction Process Standardization through Building BIM Application Case (건축물 BIM 적용사례를 통한 설계 및 시공프로세스 표준화 수립에 대한 연구)

  • Jeong, Hee-woong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.4
    • /
    • pp.347-358
    • /
    • 2022
  • In order to satisfy the extraction and use of information such as estimates and processes required in the design and construction stages of BIM, which is an expectation of overall construction operation for the design and construction stage of domestic buildings, it is insufficient to supply and apply mobile technologies or terminals. In this paper, standardization of BIM-based processes from the design stage to the construction stage is proposed as an efficient construction system method through mobile-based simulation and test-bed case analysis review. The current status and potential of BIM application were identified through theoretical review of BIM and case studies at home and abroad. In addition, the overall flow of the project and the direction of effective process construction were investigated through each process by 3D, 4D, and 5D execution stage and the role of each collaborator. 4D building process BIM simulation system using mobile was implemented by applying a visualization engine that simulates process information, object information connection module, and related object information. Therefore, it was possible to minimize the possibility of re-construction of the BIM design and construction process model through the visualization of 2D drawings based on the 3D model of the building and the review of errors and interferences in the drawings. In addition, in the implementation of simulation for each process of the construction process through mobile devices, it was possible to support construction progress and process management according to the optimal option selected by the user.

Effect of turbidity current on organic carbon cycle in Daecheong reservoir (탁수가 대청호 유기탄소 순환에 미치는 영향)

  • Dong Min Kim;Se Woong Chung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.148-148
    • /
    • 2023
  • 산업 고도화로 인하여 복잡하고 다양한 유기물의 사용량이 증가하였으며, 공공수역 내 새로운 오염물질이 유입됨에 따라 생화학적 산소요구량(BOD) 중심의 수질평가에 한계를 나타내었다. 이후 난분해성 물질을 고려한 유기물관리 정책과 총량관리의 필요성이 제기되었고 국내 하천과 호소에서는 총 유기탄소(TOC)를 유기물 관리지표로 설정하였다. 그러나 부영양 하천과 호소에서 TOC는 외부 부하뿐만아니라 식물플랑크톤의 과잉성장에 의해 증가할 수 있는 항목이므로 TOC 관리정책 추진을 위해서는 유기물의 기원에 대한 파악이 필요하다. 한편, 우리나라와 같이 몬순 기후대에 속한 댐 저수지의 경우 강우시 유입하는 탁수에 의해 다량의 유기물과 인이 유입되기도 하지만 식물플랑크톤의 제한요인 중 광량에 많은 영향을 미친다. 식물플랑크톤의 광합성은 수체 내 유기탄소 내부생성에 매우 중요한 요소이나 점 단위의 실험적 방법을 활용한 유기탄소 순환 해석은 저수지의 시·공간적인 변동성을 고려하기에 한계가 있다. 본 연구의 목적은 금강 수계 최대 상수원인 대청호를 대상으로 3차원 수리-수질 모델을 적용하여 유기탄소 성분 별 유입과 유출, 내부생성 및 소멸량을 평가하고 탁수가 저수지에서의 유기탄소 순환에 미치는 영향을 분석하는데 있다. 유기탄소 물질수지 해석을 위해 AEM3D 모델을 사용하였으며 2018년을 대상으로 입력자료를 구축한 후 보정 및 검정을 수행하였다. 모델은 유기탄소를 입자성, 용존성, 그리고 난분해성과 생분해성으로 구분하여 모의하며 유기물질 성상별 실험결과를 이용하여 입력자료를 구축하였으며 유기탄소순환 해석을 위해 4가지의 탄소성분과 조류 세포 내 탄소의 질량 변화율을 계산하였다. 이를 위해 외부 유입·유출부하율, 수체 내 생성(일차생산, 재부상, 퇴적물과 수체 간 확산) 및 소멸률(POC 및 조류 침강, DOC 무기화, 탈질)을 고려하였으며 탁수의 영향을 분석하기 위해 탁수 포함여부 시나리오를 구성하고 유기탄소 생성 및 소멸기작별 변동성을 비교 분석하였다. 모델은 2018년의 물수지를 적절히 재현하였으며 저수지의 수온 및 탁도 성층구조를 잘 재현해내면서 전반적인 수질을 적절하게 모의하였다. 탁수를 고려하였을 시 연간 TOC 부하량 중 내부기원 부하량은 56% 수준이였으나 탁수를 배제한 경우 내부기원 부하량은 82%로 나타났다. 특히, 연평균 Chl-a 농도가 44~48% 차이가 발생하면서 1차생산량이 약 4배가량 증가하였다. 몬순지역에서의 탁수는 체류시간이 긴 성층 저수지에서 식물플랑크톤 성장제어에 큰 영향을 미쳤으며 전반적인 유기탄소 순환을 해석하는데 있어 매우 중요한 인자로 작용하였다.

  • PDF

Characteristics of 1D-Consolidation for Soft Clay Ground Based on a Elasto-Viscous Model (탄-점성 이론에 의한 점성토 지반의 1차원 압밀특성)

  • Baek, Won-Jin;Ha, Sung-Ho;Lee, Kang-Il;Kim, Jin-Young;Kim, Ju-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.49-58
    • /
    • 2010
  • In this study, in order to investigate the characteristics of secondary consolidation in the soft clay ground, oedometer tests were carried out in a normally consolidated condition, and the consolidation characteristics of the soft clay ground were examined by the Finite Difference Method (FDM) based on the Elasto-Viscous model proposed by Yoshikuni. The consolidation tests adjusted the consolidation load increment ratio(${\Delta}p/p_0$) to 1.0 for the four cases with initial consolidation pressures of 0.8, 1.6, 3.2, and 6.4 kgf/$cm^2$. The long-term consolidation tests were examined by the tests that changed the load increment ratio to clarify the effect of consolidation load increment. Although the numerical analysis was delayed in the primary consolidation process, from the result of the numerical analysis of the laboratory tests, the applicability of the Elasto-Viscous model was verified from the agreement of the secondary consolidation process. Based on the developing of model ground consist of general soft clay, influences of consoliation parameters on the consolidation characteristics were studied by the numerical analysis.

The Effect of Pile Distallation on the Reduction of Cumulative Plastic Settlement (말뚝 설치를 통한 콘크리트궤도의 누적소성침하 감소 효과)

  • Lee, Su-Hyung;Lee, Il-Wha;Lee, Sung-Jin;Kim, Dae-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.129-137
    • /
    • 2008
  • An active application of concrete track is being expected far the future constructions of Korean railroad. In comparison with the existing ballasted tract, a concrete track is very susceptible for the settlement, since its rehabilitation requires much time and cost. When a concrete track is constructed on fine-grained subgrade soil, excessive cumulative plastic settlements due to repetitive train road may occur. In this case, the settlement of the concrete track may be effectively reduced by installing a small number of small-diameter piles beneath the track. This paper presents the effect of pile installation on the reduction of cumulative plastic settlement of concrete track. A method combining experiential equation and numerical method is proposed. Using an existing experiential equation and the estimated earth pressure distribution, the cumulative plastic strain was calculated. From the results, it is verified that the effects of the pile installation is significant to effectively reduce the cumulative plastic settlement of concrete track. The reduction effects of the cumulative plastic settlement according to the pile number and pile arrangement are presented.

BIM Mesh Optimization Algorithm Using K-Nearest Neighbors for Augmented Reality Visualization (증강현실 시각화를 위해 K-최근접 이웃을 사용한 BIM 메쉬 경량화 알고리즘)

  • Pa, Pa Win Aung;Lee, Donghwan;Park, Jooyoung;Cho, Mingeon;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.249-256
    • /
    • 2022
  • Various studies are being actively conducted to show that the real-time visualization technology that combines BIM (Building Information Modeling) and AR (Augmented Reality) helps to increase construction management decision-making and processing efficiency. However, when large-capacity BIM data is projected into AR, there are various limitations such as data transmission and connection problems and the image cut-off issue. To improve the high efficiency of visualizing, a mesh optimization algorithm based on the k-nearest neighbors (KNN) classification framework to reconstruct BIM data is proposed in place of existing mesh optimization methods that are complicated and cannot adequately handle meshes with numerous boundaries of the 3D models. In the proposed algorithm, our target BIM model is optimized with the Unity C# code based on triangle centroid concepts and classified using the KNN. As a result, the algorithm can check the number of mesh vertices and triangles before and after optimization of the entire model and each structure. In addition, it is able to optimize the mesh vertices of the original model by approximately 56 % and the triangles by about 42 %. Moreover, compared to the original model, the optimized model shows no visual differences in the model elements and information, meaning that high-performance visualization can be expected when using AR devices.

Application and conservation of 3D technology for the restoration of the original shape of military boots excavated in the DMZ (비무장지대 출토 군화의 형태 복원을 위한 3차원 디지털 기술의 적용 및 보존처리)

  • OH Seungjun;WI Koangchul
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.2
    • /
    • pp.124-133
    • /
    • 2023
  • Preservation processing for two combat boots was executed through application of 3-dimensional digital technology and with use of preservation materials providing outstanding reversibility and stability. The aim of this was to establish a method to preserve the relics of fallen Korean War soldiers that had been excavated by the soldiers remains excavation corps of the Ministry of National Defense. It was possible to estimate the foot size of the soldiers who would have worn the combat boots via 3-dimensional digital scanning and modeling of the boots. In this process, the original form of the combat boots was restored through the use of 3D-printed structures. The original form was restored through a process of removing contaminants from the excavated relics and performing a conditioning treatment, and through use of an antique-color treatment after bonding and filling in the sections that had been ripped or deteriorated. Following the aforementioned preservation processes, it was possible to confirm that both of the combat boots had soles and top sections made of rubber, and portions of the top section and ankle section of the boots were made of synthetic rubber. As such, it was confirmed that these were similar to the Shoe Pac(M-1944, 12-inch) winter boots that had been manufactured for the purposes of waterproofing and/or protection against cold, and introduced in 1944. Such results confirmed that it is possible to discover the manufacturing techniques, materials, and uses of relics excavated through application of preservation processing, thereby illustrating the importance of the convergent research of scientific preservation processing and 3-dimensional digital technology.

New tunnel reinforcement method using pressurized cavity expansion concept (천공홀 가압 팽창 개념을 도입한 터널 보조 신공법 연구)

  • Cho, In-Sung;Park, Jeong-Jun;Kim, Jong-Sun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.6
    • /
    • pp.407-416
    • /
    • 2010
  • A new tunnel auxiliary method is proposed in this paper which utilizes the concept of cavity expansion for tuunel reinforcement by forming an umbrella arch on the roof of tunnel. When an inflatable pipe is inserted and expanded by pressure in the bore hole of umbrella arch, the ground around the bore hole can be compacted so that the stress condition above the tunnel perimeter is favorably changed. In order to verify the reinforcement effect of new concept, pilot-scale chamber test, trapdoor test and numerical analysis were performed and compared. In pilot-scale chamber test, three types of inflatable pipes are tested to verify the capability of expansion, and the results arc compared with analytical results obtained by applying cavity expansion theory and with results obtained from finite clement analysis, and the experimental results showed agreeable matches with analytical and numerical ones. Numerical analysis of a tunnel and trapdoor test applied with the inflatable pipes are also performed to figure out the reinforcement effect of the proposed techniques, and the results implied that the new method with 3 directional inflatable pipe (no pressure to downward direction) can contribute to reduce tunnel convergence and face settlement.

Closing Analysis of Symmetric Steel Cable-stayed Bridges and Estimation of Construction Error (대칭형 강 사장교의 폐합해석과 시공오차의 예측)

  • Lee, Min Kwon;Lee, Hae Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.55-65
    • /
    • 2006
  • This paper presents the closing analysis of a symmetric steel cable-stayed bridge erected by a free cantilever method. Two independent structural systems are formed before the closing procedure of a bridge is performed, and thus the compatibility conditions for vertical displacement and rotational angle are not satisfied at the closing section without the application of proper sectional forces. Since, however, it is usually impossible to apply sectional forces at the closing section, the compatibility conditions should be satisfied by proper external forces that can be actually applicable to a bridge. Unstrained lengths of selected cables and the pull-up force of a derrick crane are adjusted to satisfy nonlinear compatibility conditions, which are solved iteratively by the Newton-Raphson method. Cable members are modeled by the elastic catenary cable elements, and towers and main girders are discretized by linear 3-D frame elements. The sensitivities of displacement with respect to the unstrained lengths of selected cables and the pull-up force of the derrick crane are evaluated by the direct differentiation of the equilibrium equation. A Monte-Carlo simulation approach is proposed to estimate expected construction errors for a given confidence level. The proposed method is applied to the second Jindo Grand Bridge to demonstrate its validity and effectiveness.

Evaluation and Weathering Depth Modeling of Thermally Altered Pelitic Rocks based on Chemical Weathering and Variations: Ulju Cheonjeon-ri Petroglyph (화학적 풍화작용과 조성변화에 따른 열변질 이질암의 풍화심도 모델링 및 평가: 울주 천전리 각석)

  • LEE Chan Hee;CHUN Yu Gun
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.160-189
    • /
    • 2023
  • The Cheonjeon-ri petroglyph is inscribed with shale formation belonging to the Daegu Formation of the Gyeongsang Supergroup in the Cretaceous of the Mesozoic Era. This rock undergoes thermal alteration to become hornfels, and has a high hardness and dense texture. Rock-forming minerals have almost the same composition as quartz, alkali felspar, plagioclase, calcite, mica, chlorite and opaque minerals, but calcite is rarely detected in the weathered zone. The petroglyph forms a weathered zone with a certain depth, and there is a difference in mineral and chemical composition between weathered and unweathered zones, respectively. The CaO contents of the weathered zone were reduced by more than 90% compared to that of the unweathered zone, because calcite reacted with water and dissolved. As a result of calculating the surface weathering depth for the petroglyph with the transmission characteristics of X-rays, depth of the parts in falling off and exfoliation showed a depth of about 0.5 to 1 mm, but the weathering depth in most areas was calculated to be about 3 to 4 mm. This can be proved by the contents and changes of Ca and Sr. The surface discolorations of the petroglyph are distributed with different color density, and the yellowish brown discoloration is alternated with a thin biofilm layer, showing a coverage of 79.6%. Therefore, periodic preservation managements and preventive conservation monitoring that can effectively control the physicochemical and biological damages of the Cheonjeonri petroglyph will be necessary.

A Study on Factors Influencing the Severity of Autonomous Vehicle Accidents: Combining Accident Data and Transportation Infrastructure Information (자율주행차 사고심각도의 영향요인 분석에 관한 연구: 사고데이터와 교통인프라 정보를 결합하여)

  • Changhun Kim;Junghwa Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.200-215
    • /
    • 2023
  • With the rapid advance of autonomous driving technology, the related vehicle market is experiencing explosive growth, and it is anticipated that the era of fully autonomous vehicles will arrive in the near future. However, along with the development of autonomous driving technology, questions regarding its safety and reliability continue to be raised. Concerns among technology adopters are increasing due to media reports of accidents involving autonomous vehicles. To promote the improvement of the safety of autonomous vehicles, it is essential to analyze previous accident cases and identify their causes. Therefore, in this study, we aimed to analyze the factors influencing the severity of autonomous vehicle accidents using previous accident cases and related data. The data used for this research primarily comprised autonomous vehicle accident reports collected and distributed by the California Department of Motor Vehicles (CA DMV). Spatial information on accident locations and additional traffic data were also collected and utilized. Given that the primary data used in this study were accident reports, a Poisson regression analysis was conducted to model the expected number of accidents. The research results indicated that the severity of autonomous vehicle accidents increases in areas with low lighting, the presence of bicycle or bus-exclusive lanes, and a history of pedestrian and bicycle accidents. These findings are expected to serve as foundational data for the development of algorithms to enhance the safety of autonomous vehicles and promote the installation of related transportation infrastructure.