• Title/Summary/Keyword: 메탄생산

Search Result 353, Processing Time 0.037 seconds

Characterization of an Antimicrobial Substance-producing Pseudomonas sp. BCNU 2001 (항생물질을 생산하는 Pseudomonas sp. BCNU 2001 균주의 특성)

  • Yang, Uk-Hee;Choi, Hye-Jung;Ahn, Cheol-Soo;Jeong, Yong-Kee;Kim, Dong-Wan;Joo, Woo-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.255-262
    • /
    • 2010
  • Strain BCNU 2001 was isolated from soil samples collected from Tea-baek Mountain area. The biochemical characteristics and 16S ribosomal RNA gene sequences of the isolate revealed that the strain belonged to the Pseudomonas aeruginosa. The supernatants had an antimicrobial effect on various kind of bacteria and fungi. Especially BCNU 2001 was able to greatly inhibit the growth of Micrococcus luteus, Proteus mirabilis, Proteus vulgaris, and Aspergillus niger, and its inhibition zone was measured as 18.5 mm against Micrococcus luteus, 19.0mm against Proteus mirabilis, 17.0mm against Proteus vulgaris, and 13.5 mm against Aspergillus niger, respectively. Hexane and dichloromethane extracts of BCNU 2001 exhibited significant activity against bacteria, and dichloromethane and ethylacetate extracts showed significant activity against fungi. Pseudomonas strain BCNU 2001 was also determined to have antimicrobial peptide against various microorganisms including Gram positive bacteria, Gram negative bacteria and fungi. The obtained results may provide preliminary support for the usefulness of Pseudomonas strain BCNU 2001.

Screening of Bioactive Compounds from Mushroom Pholiota sp. (비늘버섯으로부터 생리기능성 물질의 탐색)

  • Yu, Hyung-Eun;Cho, Soo-Muk;Seo, Geon-Sik;Lee, Byeong-Seok;Lee, Dae-Hyoung;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.34 no.1
    • /
    • pp.15-21
    • /
    • 2006
  • Extracts from 63 kinds of Pholiota sp. fruiting bodies were prepared using water and methanol, and then their physiological functionalities were investigated. The methanol extracts from Pholiota adiposa PAD030 showed high fibrinolytic activity and those of P. adiposa ASI PAD-022 showed potential inhibitory activity of 76.8% against ${\beta}-hydroxy-{\beta}-methylglutaryl(HMG)-CoA$ reductase. The highest antioxidant and tyrosinase inhibitory activities were found in the water extracts of Pholiota sp. PSP-015 (72.7%) and methanol extracts of P. nameko PNA-024 (69.5%), respectively. However, superoxide dismutase(SOD)-like activity and elastase inhibitory activity were low in almost of the extracts. The HMG-CoA reductase inhibitor from the fruiting body of P. adiposa PAD-022 which showed the highest functionality was extracted maximally when powder of the fruiting body was shaked at $30^{\circ}C$ for 12 h by methanol and its HMG-CoA reductase inhibitory activity was 80.2%.

Evaluation of Biogas Production Rate by using Various Electrodes Materials in a Combined Anaerobic Digester and Microbial Electrochemical Technology (MET) (미생물 전기화학 기술이 적용된 단일 혐기성소화조에서 전극재질에 따른 바이오가스 생성 효율 평가)

  • Shin, Wonbeom;Park, Jungyu;Lee, Beom;Kim, Yonggeun;Jun, Hangbae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.82-88
    • /
    • 2017
  • MET (Microbial Electrochemical Technology), such as MFC (Microbial Fuel Cell) and MEC (Microbial Electrolysis Cell), is a promising technology for producing sustainable biogas from an anaerobic digester (AD). At current stage, however, the most likely limiting factors, large internal resistances, should be overcome for successful scale up of this technology. Various researchers reported that application of electrode materials containing high current density, increase of ion strength and conductivity, configuration of electrode are good methods for minimizing internal resistances. Recently, stainless steel is receiving great attention because of not only high performance and durability but also low cost. Therefore, in this study, we evaluate electrochemical characteristics and biogas production rate using various electrode materials and configuration (graphite carbon coated with catalysts ($GC-C_M$) or not (GC), stainless steel mesh (SUS-M) and plate (SUS-P)). As the results, current densities of $GC-C_M$, GC, SUS-P, SUS-M were 2.03, 1.36, 1.04, $1.13A/m^2$, respectively. Methane yields of $GC-C_M$, GC, SUS-P, SUS-M were 0.27, 0.14, 0.19, 0.21 $L-CH_4/g-COD_{rem}$., respectively. Stainless steel shows high current density and methane yield, which are similar as graphite carbon coated with catalysts.

The Determination of Anaerobic Biodegradability and Organic Fractionation of Agricultural Byproducts by Biochemical Methane Potential Assay Using Double First-Order Kinetic Model (반응속도 모델을 적용한 농업부산물의 혐기성 유기물분해율과 메탄생산잠재량 분석)

  • Shin, Kook-Sik;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.55-65
    • /
    • 2021
  • This study investigated methane productions and a degradation rate of organic matters by German standard method, VDI4630 test. In this study, 11 waste biomasses from agricultural fields were selected for the investigation. The objective of this study was to estimate a distribution of organic matters by using the Double first-order kinetics model in order to calculate the rate of biodegradable organic matters which degrade rapidly in the initial stage and the persistently biodegradable organic matters which degrade slowly later. As a result, all the biomasses applied in this study showed rapid decomposition in the initial stage. Then the decomposition rate began to slow down for a certain period and the rate became 10 times slower than the initial decomposition rate. This trend of decomposition rate changes is typical conditions of biomass decompositions. The easily degradable factors (k1) were raged between 0.097~0.152 day-1 from vegetable crops and persistent degradable factor (k2) were 0.002~0.024 day-1. Among these results, greater organic matter decomposition rates from VDI4630 had greater k1 values (0.152, 0.144day-1) and smaller k1 values (0.002, 0.005day-1) from cucumbers and paprika. In a meanwhile, radishes and tangerine rinds which had low decomposition rates showed 0.097 and 0.094 day-1 of k1 values and decomposition rates seems to affect k1 values.

Conceptual Design and Hydrodynamic Properties of a Moving Bed Reactor for Intrinsic $CO_2$ Separation Hydrogen Production Process ($CO_2$ 원천분리 수소 제조 공정을 위한 이동층 반응기의 개념 설계 및 수력학적 특성)

  • Park, Dong-Kyoo;Cho, Won-Chul;Seo, Myung-Won;Go, Kang-Seok;Kim, Sang-Done;Kang, Kyoung-Soo;Park, Chu-Sik
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.69-77
    • /
    • 2011
  • The intrinsic $CO_2$ separation and hydrogen production system is a novel concept using oxidation and reduction reactions of oxygen carrier for both $CO_2$ capture and high purity hydrogen production. The process consists of a fuel reactor (FR), a steam reactor (SR) and an air reactor (AR). The natural gas ($CH_4$) is oxidized to $CO_2$ and steam by the oxygen carrier in FR, whereas the steam is reduced to hydrogen by oxidation of the reduced oxygen carrier in SR. The oxygen carrier is fully oxidized by air in AR. In the present study, the chemical looping moving bed reactor having 200 L/h hydrogen production capacity is designed and the hydrodynamic properties were determined. Compared with other reactors, two moving bed reactors (FR, SR) were used to obtain high conversion and selectivity of the oxygen carrier. The desirable solid circulation rates are calculated to be in the range of $20{\sim}100kg/m^2s$ from the conceptual design. The solid circulation rate can be controlled by aeration in a loop-seal. To maintain the gas velocity in the moving beds (FR, SR) at the minimum fluidization velocity is found to be suitable for the stable operation. The solid holdup in moving beds decrease with increasing gas velocity and solid circulation rate.

Bioenergy and Material Production Potential by Life Cycle Assessment in Swine Waste Biomass (전과정 평가에 의한 양돈 바이오매스의 물질 및 에너지 자원화 잠재량 연구)

  • Kim, Seung-Hwan;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1245-1251
    • /
    • 2011
  • As a result of the growing livestock industry, varieties of organic solid and waste biomass are be generated in swine breeding and slaughtering stages. Anaerobic digestion is a promising alternative for the treatment of livestock waste biomass, as well as for the material recovery and energy production. Objectives of this study were to analyze the biochemical methane potential of swine waste biomasses that were generated from swine pen and slaughterhouse and to investigate the material recovery and methane yield per head. As pig waste biomass, swine slurry, blood, intestine residue, and digestive tract content were collected for investigation from pig farmhouse and slaughterhouse. The $B_{th}$ (Theoretical methane potential) and $B_0$ (Biochemical methane potential) of swine slurry generating in swine breeding stage were 0.525 and $0.360Nm^3\;kg^{-1}-VS_{added}$, the ratio of degradation ($B_0/B_{th}$) was 68.6%. $B_{th}$ of blood, intestine residue, and digestive tract content were 0.539, 0.664, and $0.517Nm^3\;kg^{-1}-VS_{added}$, and $B_0$ were 0.405, 0.213, and $0.240Nm^3\;kg^{-1}-VS_{added}$, respectively. And the ratio of degradation showed 75.1, 32.1, and 46.4% in blood, intestine residue, and digestive tract content. Material yield of swine waste biomass was calculated as TS 73.79, VS 46.75, TN 5.58, $P_2O_5$ 1.94, and $K_2O$ $2.91kg\;head^{-1}$. And methane yield was $16.58Nm^3\;head^{-1}$. In the aspect that slaughterhouse is a large point source of waste biomass, while swine farmhouse is non-point source, the feasibility of an anaerobic digestion using the slaughtering waste biomass need to be assessed in the economical aspect between the waste treatment cost and the profitable effect by methane production.

Life Cylcle Assessment (LCA) on Rice Production Systems: Comparison of Greenhouse Gases (GHGs) Emission on Conventional, Without Agricultural Chemical and Organic Farming (쌀 생산체계에 대한 영농방법별 전과정평가: 관행농, 무농약, 유기농법별 탄소배출량 비교)

  • Ryu, Jong-Hee;Kwon, Young-Rip;Kim, Gun-Yeob;Lee, Jong-Sik;Kim, Kye-Hoon;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1157-1163
    • /
    • 2012
  • This study was performed a comparative life cycle assessment (LCA) among three rice production systems in order to analyze the difference of greenhouse gases (GHGs) emissions and environment impacts. Its life cycle inventory (LCI) database (DB) was established using data obtained from interview with conventional, without agricultural chemical and organic farming at Gunsan and Iksan, Jeonbuk province in 2011. According to the result of LCI analysis, $CO_2$ was mostly emitted from fertilizer production process and rice cropping phase. $CH_4$ and $N_2O$ were almost emitted from rice cultivation phase. The value of carbon footprint to produce 1 kg rice (unhulled) on conventional rice production system was 1.01E+00 kg $CO_2$-eq. $kg^{-1}$ and it was the highest value among three rice production systems. The value of carbon footprints on without agricultural chemical and organic rice production systems were 5.37E-01 $CO_2$-eq. $kg^{-1}$ and 6.58E-01 $CO_2$-eq. $kg^{-1}$, respectively. Without agricultural chemical rice production system whose input amount was the smallest had the lowest value of carbon footprint. Although the yield of rice from organic farming was the lowest, its value of carbon footprint less than that of conventional farming. Because there is no compound fertilizer inputs in organic farming. Compound fertilizer production and methane emission during rice cultivation were the main factor to GHGs emission in conventional and without agricultural chemical rice production systems. In organic rice production system, the main factors to GHGs emission were using fossil fuel on machine operation and methane emission from rice paddy field.

Global Trends of Sciences Information on the Sour Gas (사워가스 학술정보 동향)

  • Cho, Jin Dong
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.89-101
    • /
    • 2015
  • The sour gas is natural gas containing components such as hydrogen sulphide and carbon dioxide that form acids when mixed with water. Element sulfur precipitates from sour gas when reservoir pressure and temperature decrease. According to the International Energy Agency, about 43% of the world's natural gas reserves(2,580 tcf or 73.057 tcm), excluding North America, are sour. The sour gas is often derived from the Germanic word 'sauer or acidic' and the etymology referred to as 'sour'. Sour gas requires special handling and infrastructure because it contains significant amounts of hydrogen sulphide, making it highly corrosive, flammable and explosive, and there fore more costly and dangerous to process. So the business of sour gas is affected by two important factors: the economic value of the gas, and the methods used in its production. According to be analyzed in the academic literature to sour gas(2000~2014) by the program of 'web of science', the research activities 145 papers in sour gas.

Effect of Carbon Dioxide in Fuel on the Performance of PEMFC (연료중의 이산화탄소 불순물에 의한 고분자전해질연료전지의 성능변화 연구)

  • Seo, Jung-Geun;Kwon, Jun-Taek;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.42-46
    • /
    • 2008
  • Even though fuel cell have high efficiency when pure hydrogen from gas tank is used as a fuel source, it is more beneficial to generate hydrogen from city gas (mainly methane) in residential application such as domestic or office environments. Thus hydrogen is generated by reforming process using hydrocarbon. Unfortunately, the reforming process for hydrogen production is accompanied with unavoidable impurities. Impurities such as CO, $CO_2$, $H_2S$, $NH_3$, $CH_4$, and $CH_4$ in hydrogen could cause negative effects on fuel cell performance. Those effects are kinetic losses due to poisoning of the electrode catalysts, ohmic losses due to proton conductivity reduction including membrane and catalyst ionomer layers, and mass transport losses due to degrading catalyst layer structure and hydrophobic property. Hydrogen produced from reformer eventually contains around 73% of $H_2$, 20% or less of $CO_2$, 5.8% of less of $N_2$, or 2% less of $CH_4$, and 10ppm or less of CO. This study is aimed at investigating the effect of carbon dioxide on fuel cell performance. The performance of PEM fuel cell was investigated using current vs. potential experiment, long run(10 hr) test, and electrochemical impedance measurement when the concentrations of carbon dioxide were 10%, 20% and 30%. Also, the concentration of impurity supplied to the fuel cell was verified by gas chromatography(GC).

A Study on Estimation of Initial Gas in Place for Coalbed Methane Field Using Production Data at Canada (생산자료를 이용한 캐나다 CBM 원시부존량 평가 연구)

  • Seo, Hyeongjun;Moon, Bryan;Kim, Kihong;Han, Jungmin;Kwon, Sunil
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.64-77
    • /
    • 2018
  • This paper presents the prediction of the original gas in place(OGIP) by using the material balance method and decline curve analysis method with production history and pressure transient test data for four coalbed methane wells in the Horseshoe Canyon field. In this study, the conventional gas equation and the Jensen and Smith(J&S) equation were used to material balance analysis, and the Arps' empirical correlation and Khaled method were applied to decline curve analysis. From the results, the OGIP estimated from the conventional gas and the J&S method was small in difference as under 12%. Also, in case of decline curve analysis, it was found that the Khaled method has appropriated to calculate the OGIP, because the OGIP was estimated as unlimited value by the Arps' equation from the decline exponent of 1 - 3.5. The OGIP difference between conventional gas method and Khaled method was calculated as 8.67% ~ 31.04%, and those between J&S method and Khaled method was 13.67% ~ 26.49%.