DOI QR코드

DOI QR Code

Evaluation of Biogas Production Rate by using Various Electrodes Materials in a Combined Anaerobic Digester and Microbial Electrochemical Technology (MET)

미생물 전기화학 기술이 적용된 단일 혐기성소화조에서 전극재질에 따른 바이오가스 생성 효율 평가

  • Shin, Wonbeom (Department of Environmental Engineering, Chungbuk National University) ;
  • Park, Jungyu (Department of Environmental Engineering, Chungbuk National University) ;
  • Lee, Beom (Department of Environmental Engineering, Chungbuk National University) ;
  • Kim, Yonggeun (Department of Environmental Engineering, Chungbuk National University) ;
  • Jun, Hangbae (Department of Environmental Engineering, Chungbuk National University)
  • 신원범 (충북대학교 환경공학과) ;
  • 박준규 (충북대학교 환경공학과) ;
  • 이범 (충북대학교 환경공학과) ;
  • 김용근 (충북대학교 환경공학과) ;
  • 전항배 (충북대학교 환경공학과)
  • Received : 2017.01.04
  • Accepted : 2017.02.21
  • Published : 2017.02.28

Abstract

MET (Microbial Electrochemical Technology), such as MFC (Microbial Fuel Cell) and MEC (Microbial Electrolysis Cell), is a promising technology for producing sustainable biogas from an anaerobic digester (AD). At current stage, however, the most likely limiting factors, large internal resistances, should be overcome for successful scale up of this technology. Various researchers reported that application of electrode materials containing high current density, increase of ion strength and conductivity, configuration of electrode are good methods for minimizing internal resistances. Recently, stainless steel is receiving great attention because of not only high performance and durability but also low cost. Therefore, in this study, we evaluate electrochemical characteristics and biogas production rate using various electrode materials and configuration (graphite carbon coated with catalysts ($GC-C_M$) or not (GC), stainless steel mesh (SUS-M) and plate (SUS-P)). As the results, current densities of $GC-C_M$, GC, SUS-P, SUS-M were 2.03, 1.36, 1.04, $1.13A/m^2$, respectively. Methane yields of $GC-C_M$, GC, SUS-P, SUS-M were 0.27, 0.14, 0.19, 0.21 $L-CH_4/g-COD_{rem}$., respectively. Stainless steel shows high current density and methane yield, which are similar as graphite carbon coated with catalysts.

최근, 미생물전기화학기술(microbial electrochemical technology, MET)을 혐기성 소화에 적용하여 바이오가스 발생량을 증대시키는 연구가 활발하게 이루어지고 있다. 하지만, 내부저항에 따른 Scale-up 측면에서는 아직 활발한 연구가 필요하며, 내부저항을 최소화하기 위한 방안으로는 전류밀도가 높은 전극의 선정, 이온강도 및 전기전도도의 증가, 다양한 전극의 형태 및 재질 선정 등이 보고되고 있다. 최근 Stainless steel은 내구성이 강할 뿐만 아니라 비용 역시 저렴하고, 특히 음극으로 사용되는 경우 백금 금속이나 탄소기반의 섬유재질의 전극과 유사한 효율이 나타남에 따라 그 관심이 높아지고 있다. 따라서, 본 연구에서는 Graphite carbon에 전기전도도 및 전류밀도, 내구성을 향상시킬 수 있는 Ni, Cu, Fe의 코팅 여부와 최근 주목받고 있는 Stainless steel 재질의 판형과 그물망 형태의 전극을 사용하여 전기화학적 특성과 바이오가스 발생량을 비교함으로서 그 효율을 평가하였다. 그 결과, 각 전극 재질에 따른 전류밀도는 $GC-C_M$, GC, SUS-P, SUS-M이 각각 2.03, 1.36, 1.04, $1.13A/m^2$으로 나타났으며, 메탄수율은 $GC-C_M$, GC, SUS-P, SUS-M이 각각 0.27, 0.14, 0.19, 0.21 $L-CH_4/g-COD_{rem.}$로 나타났다. 즉, Stainless 재질의 금속이 코팅된 Graphite carbon과 유사한 전류밀도와 메탄수율을 나타냄을 확인할 수 있었다.

Keywords

References

  1. Korea Ministry of Environment Home Page, http://eng.me.go.kr/eng/web/main.do, February(2016).
  2. Braguglia, C. M., Gianico, A., Gallipoli, A. and Mininni, G., "The impact of sludge pre-treatments on mesophilic and thermophilic anaerobic digestion efficiency: Role of the organic load," Chem. Eng. J., 270, 362-371(2015). https://doi.org/10.1016/j.cej.2015.02.037
  3. Ahring, B., K., Sandberg, M. and Angelidaki, I., "Volatile fatty acids as indicators of process imbalance in anaerobic digestors," Appl. Microbiol. Biotechnol., 43, 559-565(1995). https://doi.org/10.1007/BF00218466
  4. Feng, Y., Zang, Y., Chen, S. and Quan, X., "Enhanced production of methane from waste activated sludge by the combined of high-solid anaerobic digestion and microbial electrolysis cell with iron-graphite electrode," Chem. Eng. J., 259(1), 787-794(2015). https://doi.org/10.1016/j.cej.2014.08.048
  5. Sun, R., Zhou, A., Jia, J., Liang, Q., Liu, Q., Xing, D. and Ren, Z., "Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells," Bioresour. Technol., 175 (2009), 68-74(2015). https://doi.org/10.1016/j.biortech.2014.10.052
  6. Priscilla, A. S., Mathew, D. M. and Bruce, E. L., "The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells," J. Power Sources, 190, 271-278 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.144
  7. Aijie, W., Wenzong, L., Shaoan, C., Defeng, X., Jizhong, Z. and Bruce, E. L., "Source of methane and methods to control its formation in single chamber microbial electrolysis cells," Int. J. Hydrogen Energy., 34, 3653-2658(2009). https://doi.org/10.1016/j.ijhydene.2009.03.005
  8. Wang, A., Liu, W., Cheng, S., Xing, D., Zhou, J. and Logan, B. E., "Source of Methane and Methods to Control its Formation in Single Chamber Microbial Electrolysis Cells," Int. J. Hydrogen Energy, 34(9), 3653-3658(2009). https://doi.org/10.1016/j.ijhydene.2009.03.005
  9. Logan, B. E., Call, D., Cheng, S., Hamelers, H. V. M., Sleutels, T. H. J. A., Jeremiasse, A. W. and Rozendal, R. A., "Microbial electrolysis cells for high yield hydrogen gas production from organic matter," Environ. Sci. Technol., 42(23), 8630-8640(2008). https://doi.org/10.1021/es801553z
  10. Zhang, J., Zhang, Y., Quan, X., Chen, S. and Afzal, S., "Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe(III) reducing conditions," Bioresour. Technol., 136, 273-280(2013). https://doi.org/10.1016/j.biortech.2013.02.103
  11. Douglas, F. C. and Bruce, E. L., "A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells," Biosens. Bioelectron., 26, 4526- 4531(2011). https://doi.org/10.1016/j.bios.2011.05.014
  12. Zhang, J., Zhang, Y., Liu, B., Dai, Y., Quan, X. and Chen, S., "A direct approach enhancing the performance of a microbial electrolysis cell(MEC) combined anaerobic reactor by dosing ferric iron: Enrichment and isolation of Fe(III) reducing bacteria," Chem. Eng. J., 448, 223-229(2014).
  13. Rozendal, R. A., Hamelers, H. V. M., Rabaey, K., Keller, J. and Buisman, C. J. N., "Towards practical implementation of bioelectrochemical wastewater treatment," Trends Biotechnol., 26, 450-459(2008). https://doi.org/10.1016/j.tibtech.2008.04.008
  14. Logan, B. E., Call, D., Cheng, S., Hamelers, H. V. M., Sleutels, T. H. J. A. and Jeremiasse, A. W., et al., "Microbial electrolysis cells for high yield hydrogen gas production from organic matter," Environ. Sci. Technol., 42, 8630-8640(2008). https://doi.org/10.1021/es801553z
  15. Liu, H., Grot, S. and Logan, B. E., "Electrochemically assisted microbial production of hydrogen from acetate," Environ. Sci. Technol., 39, 4317-4320(2005). https://doi.org/10.1021/es050244p
  16. Rozendal, R. A., Hamelers, H. V. M., Euverink, G. J. W., Metz, S. J. and Buisman, C. J. N., Process for producing hydrogen, WO2005005981; 2005.
  17. Rozendal, R. A., Hamelers, H. V. M., Euverink, G. J. W., Metz, S. J. and Buisman, C. J. N., "Principle and perspectives of hydrogen production through biocatalyzed electrolysis," Int. J. Hydrogen Energy, 31, 1632-1640(2006).
  18. Call, D. F., Merrill, M. D. and Logan, B. E., "High surface area stainless steel brushes as cathodes in microbial electrolysis cells," Environ. Sci. Technol., 43, 2179-2183(2009). https://doi.org/10.1021/es803074x
  19. Yoon, H. S., Song, Y. C. and Choi, T. S., "Improvement of Anodic Performance by Using CTP Binder Containg Nickel," J. Korean Soc. Environ. Eng., 37(9), 499-504(2015). https://doi.org/10.4491/KSEE.2015.37.9.499
  20. Motos, P. R., Heijne, A. T., van der Weijden, R., Saakes, M., Buisman, C. J. N. and Sleutels, T. H. J. A. "High rate copper and energy recovery in microbial fuel cells," Front Microbiol., 6, 527(2015). doi:10.3389/fmicb.2015.00527
  21. Meng, X., Zhang, Y., Li, Q. and Quan, X., "Adding Fe powder to enhance the anaerobic conversion of propionate to acetate," Biochem. Eng. J., 73, 80-85(2013). https://doi.org/10.1016/j.bej.2013.02.004
  22. Rader, G. K. and Logan, B. E., "Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate," Int. J. Hydrogen Energy, 35, 8848-8854(2010). https://doi.org/10.1016/j.ijhydene.2010.06.033
  23. Tian, D., Lee, B., Park, J. G. and Jun, H. B., "Function of Microbial Electrochemical Technology in Anaerobic Digestion using Sewage Sludge," J. Korean Soc. Water Environ., 32(3), 297-302(2015). https://doi.org/10.15681/KSWE.2016.32.3.297
  24. Zhang, Y. M., Merrill, M. D. and Logan, B. E., "The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells," Int. J. Hydrogen Energy, 35, 12020-12028 (2010). https://doi.org/10.1016/j.ijhydene.2010.08.064
  25. Kundu, A., Sahu, J. N., Redzwan, G. and Hashim, M. A., "An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell," Int. J. Hydrogen Energy, 38, 1745-1757(2013). https://doi.org/10.1016/j.ijhydene.2012.11.031