• Title/Summary/Keyword: 먹매김 자동화

Search Result 6, Processing Time 0.018 seconds

Development Directions for Automated Layout System of Building Structures (건축물 골조공사용 먹매김 자동화 시스템 개발방향 연구)

  • Lim, Hyunsu;Cho, Kyuman;Kim, Taehoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.387-396
    • /
    • 2021
  • In building construction, the layout operation is performed to accurately construct the building components in their planned locations, and requires a high level of accuracy and precision. With increases in building size and a lack of skilled laborers, this work has seen an increasing demand for productivity and quality improvements through robot-based construction automation. In particular, the layout work for building structures has a higher need for automation. On this background, this study suggests a direction for the development of an automated layout system of building structures. 5 technical factors and 17 sub-factors were derived based on reviews of existing similar systems, and an evaluation of their importance was carried out through an expert survey. As a result, it was found that the most important factors were driving and marking systems for coping with poor driving and working conditions. In terms of sub-factors, control techniques to secure precision and technologies to automate the overall layout process showed high importance. These findings will contribute to the development of more practical and efficient automation systems.

Measuring Rebar Position Error and Marking Work for Automated Layout Robot Using LiDAR Sensor (마킹 로봇의 자동화를 위한 LiDAR 센서 기반 철근배근 오차 측정 및 먹매김 수행 프로세스 연구)

  • Kim, Taehoon;Lim, Hyunsu;Cho, Kyuman
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.2
    • /
    • pp.209-220
    • /
    • 2023
  • Ensuring accuracy within tolerance is crucial for a marking robot; however, rebar displacement frequently occurs during the structural work process, necessitating corrections to layout lines or rebar locations. To guarantee precision and automation, the marking robot must be capable of measuring rebar error and determining appropriate adjustments for marking lines and rebar placement. Consequently, this study proposes a method for measuring rebar location error using a LiDAR sensor and implementing a layout assessment process based on the measurement results. The rebar recognition experiment using the LiDAR sensor yielded an average error of 5mm, demonstrating a reliable level of accuracy for wall rebars. Additionally, this research proposed a process that enables the robot to evaluate rebar and marking corrections based on the error range. The findings of this study can contribute to the automated operation of marking robots while accounting for construction errors, potentially leading to improvements in structural quality.

Development of an Automated Layout Robot for Building Structures (건축물 골조공사 먹매김 시공자동화 로봇 프로토타입 개발)

  • Park, Gyuseon;Kim, Taehoon;Lim, Hyunsu;Oh, Jhonghyun;Cho, Kyuman
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.689-700
    • /
    • 2022
  • Layout work for building structures requires high precision to construct structural elements in the correct location. However, the accuracy and precision of the layout position are affected by the worker's skill, and productivity can be reduced when there is information loss and error. To solve this problem, it is necessary to automate the overall layout operation and introduce information technology, and layout process automation using construction robots can be an effective means of doing this. This study develops a prototype of an automated layout robot for building structures and evaluates its basic performance. The developed robot is largely composed of driving, marking, sensing, and control units, and is designed to enable various driving methods, and movement and rotation of the marking unit in consideration of the environment on structural work. The driving and marking performance experiments showed satisfactory performance in terms of driving distance error and marking quality, while the need for improvement in terms of some driving methods and marking precision was confirmed. Based on the results of this study, we intend to continuously improve the robot's performance and establish an automation system for overall layout work process.

A study on improvement priority of an automated layout robot (먹매김 시공 자동화 로봇 개선 우선순위 도출 연구)

  • Park, Gyuseon;Kim, Taehoon;Lim, Hyunsu;Cho, Kyuman
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.233-234
    • /
    • 2023
  • Construction robot-based automation can contribute to productivity and quality improvement by replacing manpower in tasks that have simple repetitive properties or require high precision. In this respect, layout work is one of the most effective tasks in introducing robot-based automation technology. The development of a robotic layout system for building structures has recently been promoted in Korea, and a prototype of a marking robot has been produced. However, for commercialization, the technology improvement is required through the analysis of major improvement directions. Therefore, this study aims to derive the improvement priorities of the marking robot based on the evaluation of researchers who participated in the development process. As a result, there was a high demand for improvement in factors such as the robot's precise positioning method and robot size and weight. The results of this study are expected to serve as guidelines for the efficient input of limited resources in the future technology development process.

  • PDF

A Study on Establishing a Digital Twin Model for Automated Layout Robots (먹매김 시공 자동화 로봇의 디지털 트윈 모델 구축 방안 연구)

  • Park, Gyuseon;Lee, Dohyeon;Jang, Minho;Kim, Taehoon;Lim, Hyunsu;Cho, Kyuman
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.155-156
    • /
    • 2022
  • In the process of developing an industrial robot, various simulations should be conducted to evaluate the driving, movement, and performance of the robot. Space and time constraints exist to manufacture existing robots and implement various simulations, and efficiency is reduced due to high costs. To solve this problem, many simulations can be conducted by implementing the same movement and working environment as the real environment in virtual reality using digital twin technology. This study proposes a process for establishing a digital twin model of automated layout robots. Using the digital twin model, it is expected that it will not only evaluate the hardware performance of the robot in the future, but also verify the robot's algorithms such as motion planning and work process, identify and solve potential problems in advance, and prevent problems caused by software.

  • PDF

Preliminary Study on Elemental Factors and Performance Requirements for Robotic Layout System (먹매김 시공 자동화 로봇 요소기술 및 요구성능 도출 기초 연구)

  • Kim, Chowon;Park, Gyu Seon;Ji, Hyunsuh;Kim, Taehoon;Lim, Hyunsu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.257-258
    • /
    • 2021
  • Construction robotics is rapidly forming a market in conjunction with the development of sensing and artificial intelligence technologies. The layout work for accurately constructing the shape and dimensions of the building frame requires high accuracy and precision, and is one of the high demands for productivity and quality improvement through construction automation. Thus, as a preliminary study, we derived the elemental factors and performance requirements for developing an automated layout robot. In addition, alternatives on driving and marking units were investigated based on literature review and practioner's interview. The result of this study will be used as a basic data for the layout robot design.

  • PDF