• 제목/요약/키워드: 머신 데이터

검색결과 1,217건 처리시간 0.044초

지역화 공공데이터 기반 초등학생 머신러닝 교육 프로그램 개발 (Development of Machine Learning Education Program for Elementary Students Using Localized Public Data)

  • 김봉철;김봄솔;고은정;문우종;오정철;김종훈
    • 정보교육학회논문지
    • /
    • 제25권5호
    • /
    • pp.751-759
    • /
    • 2021
  • 본 연구는 초등학생의 컴퓨팅 사고력 향상을 위한 교육 방법으로 지역화 공공데이터를 활용한 인공지능 교육프로그램을 개발하고 그 효과를 검증하였다. ADDIE 모형에 따라 초등학생을 대상으로 사전 요구 분석을 진행한 결과를 바탕으로 프로그램 설계를 진행하였다. 지역화 공공데이터를 기반으로 머신러닝 포 키즈와 스크래치를 활용하여 인공지능 원리를 학습하고 공공데이터를 목적에 맞게 추상화하는 과정을 통해 문제를 해결하고 컴퓨팅 사고력을 향상할 수 있도록 교육 프로그램을 개발하고 적용하였다. 비버챌린지를 활용하여 사전·사후 검사결과를 통해 컴퓨팅 사고력의 변화 정도를 분석하였으며, 분석 결과 본 연구는 초등학생의 컴퓨팅 사고력 향상에 긍정적인 영향을 미친 것으로 나타났다.

농업 공공 빅데이터를 이용한 머신러닝 기반 생산량 및 판매 수익금 예측 (Machine Learning-based Production and Sales Profit Prediction Using Agricultural Public Big Data)

  • 이현조;김용기;구현정;채철주
    • 스마트미디어저널
    • /
    • 제11권4호
    • /
    • pp.19-29
    • /
    • 2022
  • IoT 기술의 발전에 따라 스마트팜을 활용하는 농가가 증가하고 있다. 스마트팜은 환경을 모니터링하고, 원격 또는 자동으로 최적의 내부 환경을 조성하여 작물의 생산량 및 품질을 향상시킨다. 이를 위해 수집되는 농업 디지털 데이터를 활용하여 작물의 생산성을 예측하는 기술에 대한 연구가 활성화되고 있다. 그러나 생산량 예측을 위한 연구에서는 기존의 통계자료를 바탕으로 하는 통계모델 기반의 연구가 대부분이며, 이에 따라 예측 정확도가 낮은 문제점이 존재한다. 본 연구에서는 시설 원예 스마트팜에 수집된 농업 디지털 데이터를 활용하여 다양한 머신러닝 모델을 통해 생산량 및 판매 수익금을 예측하고, 성능을 비교하였다. 성능을 비교한 모델은 다중선형회귀, 서포트벡터머신, 인공신경망, 순환신경망, LSTM, ConvLSTM이다. 성능 비교 결과 ConvLSTM가 R2 값 및 RMSE 값에서 가장 우수한 성능을 나타내었다.

머신러닝 기반 외식업 프랜차이즈 가맹점 성패 예측 (Prediction of Food Franchise Success and Failure Based on Machine Learning)

  • 안예린;유성민;이현희;박민서
    • 문화기술의 융합
    • /
    • 제8권4호
    • /
    • pp.347-353
    • /
    • 2022
  • 외식업은 소비자의 수요가 많고 진입장벽이 낮아 창업이 활발하게 일어난다. 하지만 외식업은 폐업률이 높고, 프랜차이즈의 경우 동일 브랜드 내에서도 매출 편차가 크게 나타난다. 따라서 외식업 프랜차이즈의 폐업을 방지하기 위한 연구가 필요하다. 이를 위해, 본 연구에서는 프랜차이즈 가맹점 매출에 영향을 미치는 요인들을 살펴보고, 도출된 요인들에 머신러닝 기법을 활용하여 프랜차이즈의 성패를 예측하고자 한다. 강남구 프랜차이즈 매장의 PoS(Point of Sale) 데이터와 공공데이터를 활용하여 가맹점 매출에 영향을 미치는 여러 요인들을 추출하고, VIF(Variance Inflation Factor)를 활용하여 다중공산성을 제거하여 타당성 있는 변수 선택을 진행한 뒤, 머신러닝 기법 중 분류모델을 활용하여 프랜차이즈 매장의 성패 예측을 진행한다. 이를 통해 최고 정확도 0.92를 가진 프랜차이즈 성패 예측 모델을 제안한다.

머신러닝을 활용한 MBTI 기반 학습유형설계 (MBTI-Based Learning Types Design Using Machine Learning)

  • 오수민;손서영;양혜성;박민서
    • 문화기술의 융합
    • /
    • 제8권6호
    • /
    • pp.207-213
    • /
    • 2022
  • MBTI(Myer Briggs Type Indicator)는 사람들의 성향을 직관적으로 파악하고 분류하는데 효과적인 성격유형검사이다. 이에 따라 학습 영역에 MBTI를 적용하려는 시도가 활발히 이뤄지고 있으나, MBTI를 활용하여 새로운 학습유형을 만드는 연구는 부족한 실정이다. 따라서 본 논문은 학습에 영향을 미치는 요인들을 살펴보고, 이를 특성으로 하는 머신러닝 알고리즘에 적용하여 새로운 학습 유형 MY, STI(MY, Study Type Indicator)를 구현했다. 데이터는 일반인 144명에게 구글폼으로 제작한 학습유형 검사를 실시하여 수집하였고, 머신러닝 중 지도 학습을 사용하여 학습시켰다. 그 결과 MY, STI의 정확도는 학습 방법, 학습 동기, 외부 자극 유무, 학습 시간 기준별 각각 0.933, 0.866, 0.844, 0.733으로 나타났다.

머신러닝을 이용한 이동통신 데이터 기반 교통량 추정 모형 개발 (A Study on the Development of Traffic Volume Estimation Model Based on Mobile Communication Data Using Machine Learning)

  • 오동섭;윤소식;이철기;조용성
    • 한국ITS학회 논문지
    • /
    • 제22권4호
    • /
    • pp.1-13
    • /
    • 2023
  • 본 연구는 이동통신 로그 데이터를 통해 산출된 교통량 정보를 활용하여 기존 검지기에 준하는 교통량 정보를 추정하기 위해, 머신러닝의 앙상블 기법을 기반으로 하는 최적의 이동통신 기반 교통량 추정 모형을 개발하는 것이다. 이동통신 데이터를 통해 계측된 교통량 등의 정보와 VDS 실측 데이터를 활용하여 머신러닝 모형들을 통해 비교·분석한 결과, LightGBM 모형이 교통량 추정의 최적모형으로 선정되었다. 국도 1, 3, 6호선 검지영역 96개소를 대상으로 교통량 추정 모형의 성능을 평가한 결과, 전체 검지영역의 경우 MAPE 8.49로 교통량 추정 정확도가 91.51%로 분석되었다. VDS가 설치되지 않은 구간의 경우 교통량 추정 정확도는 92.6%로, VDS 설치가 어려운 구간에서도 LightGBM 교통량 추정 모형이 적용 가능하였다.

머신러닝 기반 수소 충전소 에너지 수요 예측 모델 (Machine Learning-based hydrogen charging station energy demand prediction model)

  • 황민우;하예림;박상욱
    • 인터넷정보학회논문지
    • /
    • 제24권2호
    • /
    • pp.47-56
    • /
    • 2023
  • 수소 에너지는 높은 에너지 효율로 열과 전기를 생산하면서도 온실가스와 미세먼지 등 유해물질 배출이 없는 친환경 에너지로서, 전 세계적으로 탄소중립으로의 전환을 위한 핵심으로 주목받고 있다. 특히 스마트 수소에너지는 경제적이고 지속 가능하며, 안전한 미래 스마트 수소에너지 서비스로써 수소 에너지의 기반 시설이 디지털로 통합되어 '데이터' 기반으로 안정적으로 운영되는 서비스를 의미한다. 본 논문에서는 데이터 기반 수소 충전소 수요예측 모델 구현을 위해 강원도 내 설치되어 있는 수소 충전소 3곳(춘천, 속초, 평창)을 선정, 수소 충전소의 수요공급 데이터를 확보하였고, 머신러닝 및 딥러닝 알고리즘 7개를 선정하여 총 27종 입력 데이터(기상데이터+수소 충전소 수요량)로 모델을 학습하였고, 평균 제곱근 오차(RMSE)로 모델을 평가하였다. 이를 통해 본 논문에서는 최적의 수소 에너지 수요공급을 위한 머신러닝 기반 수소 충전소 에너지 수요 예측 모델을 제안한다.

머신러닝 기반 2호선 출퇴근 시간대 지하철 역사 내 혼잡도 예측 (Subway Line 2 Congestion Prediction During Rush Hour Based on Machine Learning)

  • 장진영;김채원;박민서
    • 문화기술의 융합
    • /
    • 제9권6호
    • /
    • pp.145-150
    • /
    • 2023
  • 지하철은 사람들이 일상적으로 이용하는 대중교통으로 자리잡고 있다. 특히 2호선은 지하철 승객이 하루동안 가장 많이 이용하는 역들이 포함되어 있는 호선으로 출퇴근 시간대에는 높은 혼잡도로 인해 압사사고의 위험성이 높아지고 있으며, 이는 지하철을 이용하는 사람들의 안전성과 쾌적함을 저하시킨다. 따라서 지하철 역사 내 혼잡도 예측을 바탕으로 높은 혼잡도로 인해 발생하는 문제를 대비할 필요가 있다. 이를 위해 본 연구에서는 출퇴근 시간대 혼잡 여부를 판별하는 머신러닝 분류 모델을 제안한다. 선행연구를 통해 지하철 혼잡도에 영향을 주는 변수를 파악하고, 공공데이터포털에서 출퇴근 시간대의 2호선 지하철 혼잡도 데이터셋을 수집하여 머신러닝을 기반하여 2호선 지하철 역사 내 혼잡 여부를 예측한다. 본 연구에서 제안하는 출퇴근 시간대 2호선 역사 내 혼잡도 예측 모델은 지하철 이용객의 안전과 만족도를 향상시키기 위한 지하철 운영 계획 수립에 활용될 수 있을 것으로 기대된다.

데이터 리터러시를 위한 머신러닝 기반 AI 융합 수업 모형 개발 (Development of AI Convergence Education Model Based on Machine Learning for Data Literacy)

  • 강상우;이유진;임효정;최원근
    • 산업과 과학
    • /
    • 제3권1호
    • /
    • pp.1-16
    • /
    • 2024
  • 본 연구는 고등학교 학생들의 데이터 리터러시를 함양할 수 있는 머신러닝 기반 AI 융합 수업 모형과 수업 설계 원리를 개발하고, 그에 따른 상세 지침을 개발하는 것을 목적으로 하였다. 이를 위해 선행 문헌 연구를 통해 머신러닝을 기반으로 한 수업 모형과 설계 원리 및 상세 지침을 개발하고, 서울 소재 상업계열 특성화고등학교 학생 15명에게 적용하여 실행하였다. 연구 결과 학생들의 데이터 리터러시가 통계적으로 유의미(p< .001)하게 향상되었으므로 본 연구의 수업 모형이 학습자의 데이터 리터러시 향상에 긍정적인 영향을 주었음을 확인할 수 있었고, 앞으로 관련 연구로 이어지길 기대한다.

머신러닝 기법을 활용한 낙동강 하구 염분농도 예측 (Nakdong River Estuary Salinity Prediction Using Machine Learning Methods)

  • 이호준;조민규;천세진;한정규
    • 스마트미디어저널
    • /
    • 제11권2호
    • /
    • pp.31-38
    • /
    • 2022
  • 하천의 염분 변화를 신속히 예측하는 것은 염분 침투로 인한 농업, 생태계의 피해를 예측하고 재해 방지 대책을 수립하기 위해서 중요한 작업이다. 머신러닝 기법은 물리 기반 수리 모델에 비해 계산량이 훨씬 적기 때문에, 비교적 짧은 시간에 염분농도를 예측 가능하여 물리 기반 수리 모델의 보완 기법으로 연구되고 있다. 해외에서는 머신러닝 기법 기반 염분 예측 연구들이 활발히 연구되고 있으나, 대한민국의 공공데이터에 머신러닝 기법을 적용한 연구는 충분치 않다. 낙동강 하구의 환경 정보에 관한 공공데이터와 함께, 본 연구는 여러 종류의 머신러닝 기법의 염분농도에 대한 예측 성능을 측정하였다. 실험 결과에서, 결정 트리 기반의 LightGBM 알고리즘은 평균 RMSE 0.37의 예측 정확도와 타 알고리즘 대비 2-20배 빠른 학습 속도를 보여주었다. 따라서 국내 하천의 염분농도 예측에도 머신러닝 기법을 적용할 수 있다고 판단된다.

머신러닝포키즈를 활용한 데이터 편향 인식 학습: AI야구심판 사례 (Learning Method of Data Bias employing MachineLearningforKids: Case of AI Baseball Umpire)

  • 김효은
    • 정보교육학회논문지
    • /
    • 제26권4호
    • /
    • pp.273-284
    • /
    • 2022
  • 본고의 목표는 데이터 편향 인식 교육에서 기계학습 플랫폼의 사용을 제안하는 것이다. 학습자들이 인공지능 데이터 및 시스템을 다루거나 인공지능윤리 요소 중 데이터 편향에 의한 피해를 방지하고자 할 때 인지할 수 있는 역량을 배양할 수 있다. 구체적으로, 머신러닝포키즈를 활용해 데이터편향 학습을 하는 방법을 AI야구심판 사례를 통해 제시한다. 학습자는 구체적 주제선정, 선행연구 검토, 기계학습 플랫폼에서 편향/비편향 데이터의 입력 및 테스트 데이터 구성, 기계학습의 결과 비교, 결과를 통해 얻을 수 있는 데이터 편향에 대한 함의를 제시한다. 이러한 과정을 통해서 학습자는 인공지능 데이터 편향이 최소화되어야 한다는 점과 데이터 수집 및 선정이 사회에 미치는 영향을 체험적으로 배울 수 있다. 이 학습방법은 문제기반의 자기주도 학습의 용이성, 코딩교육과의 결합가능성, 그리고 인문사회적 주제와 인공지능 리터러시와 결합을 추동한다는 의의를 가진다.