• Title/Summary/Keyword: 머리치기

Search Result 6, Processing Time 0.021 seconds

A Basic Study on Temperature Characteristic Analysis of Kumdo Motion by Infrared Rays Camera (열화상 카메라를 이용한 검도 동작의 온도 특성 분석 기초 연구)

  • Lee, Gyuseon;Nam, Joong Woong;Seok, Kang Hoon;Kim, Jeongbae
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.18-23
    • /
    • 2012
  • The purpose of this study is to visually confirm on variation of temperature changes according to the basic of Kumdo by using infrared rays camera and to obtain the difference of temperature distribution according to the warm up procedure. We selected randomly two Kumdo players, and recorded twice continuously their actions of three basic(Head Hitting, Wrist Hitting, Waist Hitting) motions of Kumdo. In other to obtain the effect of warm up procedure, we recorded again their actions including warm-up motions. Four measuring points on the body were selected in each motion considering the error on continuous recoding. Temperature distributions of the before and after warming up procedure were analyzed at two measuring point. Skin temperature distributions of the players's body in two cases are shown a similar tendency. It can be predicted that the parts of large physical movement result in the large changes of temperature according to the warm up motion.

  • PDF

Development on Human Muscle Skeletal Model and Stress Analysis of Kumdo Head Hitting Motion (검도 머리치기 동작의 인체 근골격 모델개발 및 응력해석)

  • Lee, Jung-Hyun;Lee, Se-Hoon;Lee, Young-Shin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.116-125
    • /
    • 2007
  • Human muscle skeletal model was developed for biomechanical study. The human model was consists with 19 bone-skeleton and 122 muscles. Muscle number of upper limb, trunk and lower limb part are 28, 60, 34 respectively. Bone was modeled with 3D beam element and muscle was modeled with spar element. For upper limb muscle modelling, rectus abdominis, trapezius, deltoideus, biceps brachii, triceps brachii muscle and other main muscles were considered. Lower limb muscle was modeled with gastrocenemius, gluteus maximus, gluteus medius and related muscles. The biomechanical stress and strain analysis of human was conducted by proposed finite element analysis model under Kumdo head hitting motion. In this study structural analysis has been performed in order to investigate the human body impact by Kumdo head hitting motion. As the results, the analytical displacement, stress and strain of human body are presented.

Study of the forearm EMG activities during Kumdo head striking (검도 머리치기 유형에 따른 상지의 근전도 비교 분석)

  • Jang, Eon-Ryang;Park, Young-Hoon;Youm, Chang-Hong;Seo, Kuk-Woong;Noh, Suk-Gyo
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.219-233
    • /
    • 2004
  • The purpose of this study was to compare the EMG activities of four-forearm muscles during Kumdo head striking. The four skilled and unskilled Kumdo club members were selected from D university in B city. Investigated muscles were left brachioradialis, right brachioradialis and left flexor carpi radialis, right flexor carpi radialis. Raw EMG data were collected during the head striking motions and the average EMG were calculated by the frame width of 0.05s, and then the average %MVC were calculated. The average %MVC values of each muscle in each group were compared. The results are as follows. 1) In each group, there were no significant statistical differences between every muscle over the all phases. 2) There were significant differences, however, between skilled group and unskilled group. The former got higher average %MVC at left flexor carpi radialis and the latter at right brachioradialis in the ready phase and in the impact phase.

The Analysis of Electromyography and Kinematic of Kumdo Player's Head Hitting (검도 머리치기 동작의 근전도 및 운동학적 분석)

  • Park, Jong-Rul
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.63-74
    • /
    • 2005
  • J. R. PARK. The Analysis of Electrimyography and Kinematic of Kumdo Player's Head Hitting. Korean Journal of Sport Biomechanics, Vol. 15, No. 1, pp. 63-74, 2005. The purpose of this study were to describe and compare the selected electromyographical muscle activities of arm and kinematic data of kumdo player's head hitting. Using surface electrode electromyography, we evaluated muscle activity in 6 male players during head hitting motion. Surface electrodes were used to record the level of muscle activity in the carpi radialis, deltoid, triceps, biceps muscles during the player's head hitting. These signals were compared with %RVC(Reference voluntary contraction) which was normalized by IEMG(Integrated EMG). The kumdo head hitting motion was divided into two phases: back swing, down swing. we observed patterns of arm muscle activity throughout two phases of the kumdo head hiting The results can be summarized as follows: right elbow angle had decreased and left deltoid muscle's activation had higher than right deltoid muscle's activation, right carpi radialis muscle's activation had higher than left carpi radialis muscle's activation in back swing phase, knee angle had decreased and left triceps muscle's activation had higher than right triceps muscle's activation, right deltoid muscle's activation had higher than left deltoid muscle's activation, right carpi radialis muscle's activation had higher than left carpi radialis muscle's activation in down swing phase

Kinematical Analysis on the Head Hitting Motion Based on Weight Change of Bamboo Swords (죽도 무게변화에 따른 검도 머리치기 동작의 운동학적 분석)

  • Chung, Nam-Ju;Kim, Jae-Pil;Ku, Jong-Mo
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • This study was performed to investigate the kinematic factors on the head hitting motion based on weight change of bamboo swords in kumdo. The kinematic factors, needed time per phase, COB displacement and velocity, angle(wrist, elbow, shoulder joint, hip joint, knee joint), were analyzed by the 3-D motion analysis method against 6 male middle school athletes. The results were as follows. 1. The needed time of head hitting motion based on weight change of bamboo swords was shorter when weight was heavier. 2. The COB displacement of left/right was bigger when weight was heavier. the displacement of right foot was higher at backswing phase and impact phase when weight was heavier and at impact time when weight was lighter. 3. The COB velocity was faster at impact time when weight was heavier, the velocity of sword tip was fastest for each event with bamboo sword weight of 440 g. 4. The angle of left elbow was smaller at top of backswing and impact when weight was heavier, the angle of left shoulder was bigger when weight was heavier, the right knee angle was biger at start when weight was heavier, at impact when weight was lighter.

Kinemetic analysis of a thumping security motion with an expandable barton (경호원의 삼단봉 머리치기 동작의 운동학적 분석)

  • Kim, Yong-Hak;Kim, Sin-Hye;Jung, Sung-Bae
    • Korean Security Journal
    • /
    • no.36
    • /
    • pp.93-109
    • /
    • 2013
  • This research is mainly based on the experimental result due to seek different outcomes whena certain security motion with a paticular gear is applied in a plausible confrontational situation. For the purpose of this research an Expandable Baton, which is one of the most commonsecurity equipments, was chosen to be applied in a situation of hitting a person's head. Alsothe results will be studied in the view of Kinematic theory. To demonstrate, 10 students who were majeored in Escort Crane studies at 'H' university werechosen as testees. The participants were grouped into two-one is practiced with the 'expanadable baton use program' and the other is pre-practiced. In this report two groups abovewill be reffered as 'group A' and 'group B' for conveniency. There were a number of differences and changes between two groups. Group B took more timethan the other group did. Group A spent about 0.428sec in section 'e2' and 0.230sec in section'e3' while Group B took 0.435sec, 0.232sec in each sections.To add on, more distinctive results were out when it was more focused on physical movements. Two gropus presented considerable changes- in an 'left-right' moving displacement-Group A;$2.16{\pm}0.9cm$ (left side), $3.78{\pm}1.42cm$ (right side), total $5.94{\pm}2.03cm$. Group B; $2.97{\pm}1.01cm$ (left side),$4.56{\pm}1.57cm$ (right side), total $7.53{\pm}2.13cm$.Continuously, different outcomeswere shown between two groups in a 'back and forth' moving displacement-Group A;$32.48{\pm}3.86cm$, $35.21{\pm}4.64cm$, total $69.36{\pm}5.72$. Group B; $34.50{\pm}6.12cm$, $37.04{\pm}3.70cm$, total $71.46{\pm}7.17cm$. Furthermore, changes in an 'up and down' moving displacement were - GroupA; $5.62{\pm}2.41cm$, $4.54{\pm}1.87cm$, total $10.11{\pm}1.57cm$. Group B; $6.33{\pm}1.78cm$, $4.86{\pm}1.85cm$,total $10.68{\pm}1.81cm$. To continue, there were few modifications of degree on participants' joints, espcially on 'Wristjoint', 'Elbow joint' and 'Shoulder joint', depend on different sections -Wrist joint;Group A; e1 $114.62{\pm}7.13$, e2 $68.27{\pm}6.37$, e3 $131.64{\pm}6.27$. Group B; e1 $112.62{\pm}6.13$, e2 $66.28{\pm}7.38$, e3$137.42{\pm}4.28$ and Elbow joint ; Group A e1 $132.31{\pm}6.55$, e2 $117.92{\pm}8.42$, e3 $144.41{\pm}6.32$. Group B; e1 $133.58{\pm}8.56$, e2 $114.45{\pm}8.21$, e3 $139.89{\pm}4.38$. Lastly, degree changes ofshoulder joint were; Group A; e1 $13.55{\pm}3.85$, e2 $131.42{\pm}11.24$, e3 $78.32{\pm}6.28$. Group B; e1$9.45{\pm}1.23$, e2 $136.74{\pm}13.21$, e3 $79.75{\pm}4.24$.

  • PDF