• Title/Summary/Keyword: 맥동 유동

Search Result 148, Processing Time 0.019 seconds

Effects of Outflow Area on Pool Boiling in Vertical Annulus (출구유로 단면적이 수직 환상공간 내부의 풀비등에 미치는 영향)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.377-385
    • /
    • 2013
  • To identify the effects of an outflow area on pool boiling heat transfer in a vertical annulus, three different flow restrictors were studied experimentally. For the test, a heated tube of smooth stainless steel and water at atmospheric pressure were used. Both annuli with open and closed bottoms were considered. To validate the effects of the outflow area on the heat transfer, the results of the annulus with the restrictor were compared with the data for the plain annulus without the restrictor. The reduction of the outflow area ultimately results in a decrease in the heat transfer. As the outflow area is very small, a slight increase in heat transfer is also observed. The major cause of this tendency is explained as the difference in the intensity of liquid agitation cause by the movement of coalesced bubbles. It is identified that the convective flow, pulsating flow, and evaporative mechanism are considered as the important mechanisms.

A Closed Counter-Current Two-Phase Thermosyphon Loop of a Cold Neutron Source in HANARO Research Reactor (하나로 원자로에 설치될 대향 이상 열사이펀 루프에 관한 실험)

  • Hwang, Kwon-Sang;Cho, Man-Soon;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1038-1045
    • /
    • 2000
  • An experimental study was carried out to delineate the flow characteristics in a closed countescurrent two-phase thermo syphon with concentric tubes. This is to be installed in the HANARO research reactor as a part of a Cold Neutron Source(CNS). In the present investigation, experiments ata room temperature with Freon-II3 as a moderator were performed. Results show that, based on the magnitude of pressure fluctuation, the flow regimes could be divided into 4 distinct ones in the ($V_f,\;Q_i$) plane, where $V_f$ represents the volume of the charged liquid and $Q_i$ the heat load: a stable flow regime, an oscillatory flow regime, a restablized flow regime and a dryout flow regime. For $V_f$>2.5l, the flow is stable at low $Q_i$. However, as $Q_i$ increases, the flow becomes oscillatory and finally restablizes As $V_f$ increases, the oscillation amplitude decreases, reaching to the restablized flow region at low $Q_i$, and the liquid level in the moderator cell remains high. In the oscillatory flow regimes, for a fixed VI; the oscillating period of time varies with $Q_i$, having a minimum value at a certain value of $Q_i$. The heat load, where the oscillating period of time is minimum, decreases as $V_f$ increases.

Atherogenic Risk Stratification According to Changes in the Geometrical Shape of the Coronary Artery (관상동맥의 기하학적 형상변화에 따른 동맥경화 위험도)

  • Suh, Sang-Ho;Park, Jun-Gil;Roh, Hyung-Woon;Lee, Byung-Kwon;Kwon, Hyuck-Moon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.893-899
    • /
    • 2010
  • A previous study showed that hemodynamics is correlated with stenosis in the coronary artery. The flow characteristics and the distributions of the hemodynamic wall parameters in the coronary artery are investigated under physiological flow condition. The present study also aims to establish the mechanism of the generation of atherosclerosis by analyzing the hemodynamic variables in the coronary artery where atherosclerosis frequently occurs. The stenosis phenomena due to atherosclerosis are related to not only the biochemical reaction between blood and blood vessels but also the hemodynamic factors sush as flow separation and oscillatory wall shear stress. As the bifurcated angle increases, the size of the recirculation area that appears in the cross section increases and disturbed flow is observed in this area. We speculate that this area is the starting point of atherosclerosis in the coronary artery.

EFFEECTS OF NON-NEWTONIAN FLUID MODEL ON HEMODYNAMICS IN CEREBRAL SACCULAR ANEURYSMS (낭상 뇌동맥류 혈류유동에서 비뉴우토니안 유체 모델의 영향)

  • Park, J.S.;Lee, S.W.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.81-87
    • /
    • 2011
  • The importance of shear thinning non-Newtonian blood rheology on the hemodynamic characteristics of idealized cerebral saccular aneurysms were investigated by carrying out CFD simulations assuming two different non-Newtonian rheology models (Carreau and Ballyk models). To explore effects of vessel curvature, a straight and a curved vessel geometry were considered. The wall shear stress(WSS), relative residence time(RRT) and velocity distribution were compared at the different phases of cardiac cycle. As expected, blood entered the aneurysm at the distal neck and created large vortex in both aneurysms, but with higher momentum on the curved vessel. Hemodynamic characteristics such as WSS, and RRT exhibited only minor effects by choice of different rheological models although Ballyk model produced relatively higher effects. We conclude that the assumption of Newtonian fluid is reasonable for studies aimed at quantifying the hemodynamic characteristics, in particular, WSS-based parameters, considering the current accuracy level of medical image of cerebral aneurysm.

Effects of Flow Uniformity on Exhaust Pulsation Pressure in Catalytic Converter for Motorcycle (2륜 자동차용 촉매변환기내 배기맥동압력이 유동균일도에 미치는 영향)

  • Yi, Chung-Seub;Chung, Han-Shik;Jeong, Hyo-Min;Lee, Cheol-Jae;Bae, Tae-Yeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.108-114
    • /
    • 2007
  • This research represents the catalytic converter for application in the motorcycle. We have to consider about catalytic converter for reducing exhaust gas strength regarding the displacement volume enlargement. The catalytic converter has been widely used to satisfy the regulations of pollutant emissions from automobiles. Recently, all catalytic converter researches are about automobile. Study about motorcycle catalytic converter has not been conducted yet. In this study, flow uniformity and pressure distribution were simulated in the monolithic inlet of catalytic converter for motorcycle. Exhaust pulsation pressure was set as transient condition about. It was found that flow uniformity shown in base model (0.85) was lower than megaphone model (0.98).

A study on Flow and Heat Transfer Characteristics in a Duct with Periodic Pressure Gradient (주기적인 압력구배를 받는 덕트에서의 유동 및 열전달특성에 관한 연구)

  • 이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.369-381
    • /
    • 1992
  • Characteristics of flow and heat transfer have been studied numerically in a square duct with a periodic pressure gradient. The flow in a duct was assumed to be fully developed and constant heat flux was imposed at the surfaces of a square duct. The distributions of axial velocity and time-space averaged temperature are investigated with angular velocity and amplitude ratio at a given Reynolds number 1000. When the periodic pressure gradient was imposed axially in a duct, the reverse flow may be occurred near the duct wall. The magnitude of this reverse flow increases as the amplitude ratio increases or as the angular frequency decreases. In the ranges of the amplitude ratio and the angular velocity in present investigation, the ratio of the periodic time space averaged temperature to the nonperiodic space averaged temperature has been found to be greater than one. This means that the cooling effect at the duct walls deteriorates with a periodic situation compared with nonperiodic one.

In-vivo Measurements of Blood Flow Characteristics in the Arterial Bifurcation Cascade Networks of Chicken Embryo (유정란 태아외부혈관의 단계적으로 분기되는 동맥 분지관 내부 혈액 유동특성의 in-vivo 계측)

  • Lee, Jung-Yeop;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.121-124
    • /
    • 2006
  • The arteries are very important in cardiovascular system and easily adapt to varying flow and pressure conditions by enlarging or shrinking to meet the given hemodynamic demands. The blood flow in arteries is dominated by unsteady flow phenomena due to heart beating. In certain circumstances, however, unusual hemodynamic conditions cause an abnormal biological response and often induce circulatory diseases such as atherosclerosis, thrombosis and inflammation. Therefore quantitative analysis of the unsteady pulsatile flow characteristics in the arterial blood vessels plays important roles in diagnosing these circulatory diseases. In order to verify the hemodynamic characteristics, in-vivo measurements of blood flow inside the extraembryonic arterial bifurcation cascade of chicken embryo were carried out using a micro-PIV technique. To analyze the unsteady pulsatile flow temporally, the (low images of RBCs were obtained using a high-speed CMOS camera at 250fps with a spatial resolution of $30{\mu}m\times30{\mu}m$ in the whole blood vessels. In this study, the unusual flow conditions such as flow separation or secondary flow were not observed in the arterial bifurcations. However, the vorticity has large values in the inner side of curvature of vessels. In addition, the mean velocity in the arterial blood vessel was decreased and pulsating frequency obtained by FFT analysis of velocity data extracted in front of the each bifurcation was also decreased as the bifurcation cascaded.

  • PDF

Examination on High Vibration and Branch Vent Pipe's Failure of Complex Piping System Suppling Condensate-Water in Power Site (발전소 복수 공급 배관계의 고진동과 분기 배기배관의 절손 규명)

  • Kim, Yeon-Whan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.380-384
    • /
    • 2010
  • A disturbance flow at piping bands and discontinuous regions such as a valve, a header has a intense broadband internal pressure field and a sound field which are propagated through the piping system The fields becomes the source of a vibration of this piping system. Intense broadband disturbance flow at a discontinuous region such as elbows, valves or headers generates an acoustical pulsation. The pulsation becomes the source of structural vibration at the piping system. If it coincides with the natural frequency of the pipe system, excessive vibration results. High-level vibration due to the pressure pulsation affects the reliability of the plant piping system. This paper discusses the high vibration and the branch vent pipe's failure of condensate-water supply piping system due to the effect of acoustical pulsations by flow turbulence from the flow control valves of globe type in a power site.

  • PDF

Vibration and Stress Analysis for Reactor Vessel Internals of Advanced Power Reactor 1400 by Pulsation of Reactor Coolant Pump (원자로냉각재펌프 맥동에 대한 APR1400 원자로내부구조물의 진동 및 응력 해석)

  • Kim, Kyu-Hyung;Ko, Do-Young;Kim, Sung-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1098-1103
    • /
    • 2011
  • The structural integrity of APR1400 reactor vessel internals has been being assessed referring the US Nuclear Regulatory Commission regulatory guide 1.20, comprehensive vibration assessment program. The program is composed of a vibration and stress analysis, a vibration and stress measurement, and an inspection. This paper covers the vibration and stress analysis on the reactor vessel internals by the pulsation of reactor coolant pump. 3-dimensional models to calculate the hydraulic loads and structural responses were built and the pressure distributions and the structural responses were predicted using ANSYS. This paper presents that APR1400 reactor vessel internals have enough structural integrity against the pulsation of reactor coolant pump as the peak stress of the reactor vessel internals is much lower than the acceptance limit.

Numerical Simulations of Cavitation Flow in Volumetric Gear Pump (회전 용적형 기어펌프의 캐비테이션 유동 해석)

  • Lee, Jung-Ho;Lee, Sang-Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.28-34
    • /
    • 2011
  • A volumetric gear pump is often used in extensive industrial applications to provide both high pressure and sufficiently high flow rate by physical displacement of finite volume of fluid with each revolution. Template mesh function in commercial CFD software, PumpLinx, by which 3-D meshes in the complex region between rotor and housing can be readily generated was employed for 3-D flow simulations. For cavitation analysis full cavitation model was included in 3-D simulations. The results showed high pulsation in pressure and flowrate which is implicated in pump vibration and noise. A model test for cavitation visualization was conducted and the results showed good qualitative agreement with numerical prediction.