• Title/Summary/Keyword: 매스 부재

Search Result 33, Processing Time 0.028 seconds

콘크리트 표면차수벽형 석괴댐의 균열원인 분석

  • 김광일;장동일;채원규;원일석;조광현;손영현
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.423-428
    • /
    • 2000
  • 콘크리트구조물은 비교적 경제적인 시공이 가능하며 구조물의 수명 또한 안정적인 관계로 널리 사용되어 왔다. 그러나 최근 콘크리트의 고강도화 및 설계의 최적화에 따른 부재단면의 최소화 경향, 새로운 공법의 적용 등에 따른 균열문제가 빈번하게 대두되고 있는 실정이다. 특히 다양한 토목구조물중 매스콘크리트구조물, 벽체구조물 등과 같은 종류에서의 균열문제가 자주 언급되고 있으며, 균열에 따른 심리적 불안감과 콘크리트 내구성의 저하, 궁극적으로는 구조물의 안전성에 대한 불안심리를 가증 시키고 있다.(중략)

  • PDF

The Analysis of Cracks in PSC Girder Using High Flowing Concrete (고유동 콘크리트를 사용한 PSC 거더 균열 분석)

  • Lho, Byeong Cheol;Ahn, Gwang Su;Kwak, Kil Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.126-135
    • /
    • 2013
  • Recently, mass concrete with high flowability are widely used to improve the quality and constructability in the longer span construction of prestressed concrete bridges, but it may induce nonstructural cracks due to the hydration heat and autogenous shrinkage etc. The stresses in concrete were evaluated by various experiments and numerical analysis. The tensile stress in mass concrete was increased in connection with the accumulation of hydration heat. Moreover, large amount of autogenous shrinkage from powder type admixture could add the tensile stress to mass concrete near anchorage zone. The tensile stresses in anchorage zone by heat and autogenous shrinkage exceeded the tensile strength of early stage of concrete, and small amounts of stress increasement were shown in other parts of PSC girder.

Applicability of High-strength Mass Concrete through Setting Time and Horizontally-divided Placement (응결시간제어용 배합과 수평분할을 고려한 고강도 매스콘크리트의 적용성 평가)

  • Cho, Seung-Ho;Paik, In-Kwan;Lee, Dong-Ha;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.103-113
    • /
    • 2017
  • In the current study, retarding type and standard type admixture design of concrete have been proposed to control the generation of hydration heat for foundation members that use high strengths concrete. Finite element analysis also has been conducted to understand the rational placing heights of concrete. In addition, real-size structures have experimented and their results were compared to the analytical results to evaluate the reducing effect of thermal stress. For a large $6.5m{\times}6.5m{\times}3.5m$ member with retarding and standard type horizontal partition placement of concrete showed the manageable possibility of temperature difference within 25-degree Celcius between the middle and surface portion while the maximum temperature was 77-degree Celcius. Also, temperature cracking index from the finite element analysis appeared to be 1.49 that predicts no formation of cracking due to the effects of temperature. Finally, it appeared that horizontal partition placement of retarding and standard type concrete has the significant effect of reducing the thermal stress that generated by the hydration heat in the high strengths mass concrete.

Field Application of Low Heat Concrete Using Strontium Hydroxide Based Latent Heat Material (스트론튬계 잠열재를 사용한 저발열 콘크리트의 현장적용 평가)

  • Khil, Bae Su;Yun, Hyun Do;Jeong, Ok Ran
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.218-226
    • /
    • 2011
  • Low heat concrete using strontium hydroxide based latent heat material was manufactured in ready-mixed concrete batcher plant and its fundamental properties were tested. As a result of B/P test, its applicability to the construction site was verified. After B/P test, low heat concrete using strontium hydroxide based latent heat material was applied to the real construction site of bridge footing. Through the analysis and the actual measurement of the hydration heat of the concrete footing, the reduction effect of hydration heat and thermal crack was confirmed.

A Study on Mechanical Properties of High Strength Concrete Performed by Full Scaled Mock-up Test (1:1 실부재 Mock-up Test를 통한 고강도 콘크리트의 역학적 특성에 관한 연구)

  • Moon, Hyung-Jae;Seok, Won-Kyun;Park, Soon-Jeon;Lee, Joo-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.981-984
    • /
    • 2008
  • The super tall building above 100 floors is required that each floor's height is more than 4 meters, and each core wall's thickness is more than 60cm. Therefore, for the successive accomplishment of super tall building, the full scale mock-up test was required. The test results are as follows; Real strength of core wall was satisfied with design strength at 28 days regardless of types of strength, and according to the consolidation effect, lower part's strength was a little higher than upper part's strength. Lateral force of HSC was evaluated with max. $4.5ton/m^2$, and hydration temperature of mock-up test was evaluated that maximun heat of central part revealed about $80^{\circ}C$ at 70MPa and $65^{\circ}C$ at 50MPa, and, the difference between inner and outter part revealed about $30^{\circ}C$ at 70MPa and $12^{\circ}C$ at 50MPa. Also, no crack by hydration temperature was not shown on the surface.

  • PDF

Reducing Thermal Cracking of Mat-foundation Mass Concrete Applying Different Mix Designs for Upper and Lower Placement Lifts (상하부 배합을 달리함에 의한 기초 매트 매스콘크리트의 수화열 균열저감)

  • Han, Cheon-Gu;Kim, Min-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • In this research, considering the practical conditions at field, thermal cracking reducing method was suggested based on the comparative analysis between predicted value and actual value obtained from the actual structure member with optimum mix design. The optimum mix design was deduced from the various mix designs with various proportions of cementitious binder for upper and lower placement lifts of mat-foundation mass concrete. Therefore, before field applications, the mix designs were obtained from the theoretical analysis obtained by MIDAS GEN for upper lift was OPC to FA of 85 to 15, and for lower lift was OPC to FA to BS of 50 : 20 : 30. Based on this mix design, the actual concrete for field was determined and all concrete properties were reached within the predicted range. Especially, the temperature properties of mass concrete at core was approximately $39^{\circ}C$ of temperature difference for low-heat mix design, while approximately $54^{\circ}C$ was shown for normal mix design currently used. Additionally, in the case of cracking index, the low heat mix design showed about 1.4 of relatively high value while the normal mix design showed 1.0. Therefore, it can be stated that applying low heat mix design and different heating technique between upper and lower placement lifts for mass concrete are efficient to control the thermal cracking.

A Study on the Speech Conversion Formulas for Domestic Audio Book Service (국내 음성 도서 서비스를 위한 수식의 음성변환 기법에 대한 연구)

  • Lee, Jae-Hwa;Lee, Jong-Woo;Lim, Soon-Bum
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.226-227
    • /
    • 2011
  • 현재 국내의 음성도서 서비스는 수식을 정확하게 읽어주지 못하며, 수식을 읽기 위한 독음규칙의 부재로 수식의 음성 서비스에 혼란을 야기 시키고 있다. 이에 본 논문은 중학교 수학 교과서를 바탕으로 수식표현의 '한글 독음규칙'을 정의해보았으며, 수식의 국내 음성 서비스를 위해, 정의된 '한글 독음 규칙'을 매스 파스 트리(Math Parse tree)와 매핑 하여 최종적으로 음성서비스가 가능한 수식의 음성 변환 기법에 관해 연구하였다.

Temperature History of Mock-up Mass Concrete Considering Different Heat Generation Due to Mixture Adjustment (수화발열량이 다른 콘크리트조합 모의부재 매스콘크리트의 온도이력 특성)

  • Kim Jong;Jeon Chung-Keun;Shin Dong-An;Yoon Gi-Won;Oh Seon-Kyo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.9-12
    • /
    • 2005
  • This paper investigated the temperature history of mass concrete mock up structure considering different heat generation by varying with mixture proportion. Setting time difference between high early strength mixture (E-P) and retarding mixture (R-F30) was 14.5hours. Incorporation of $30\%$ of fly ash contributed to $10^{\circ}C$ of hydration heat reduction. In generally used C and D combination, bottom concrete shows earlier hydration, while E-J combination showed reverse tendency and thus, this method can reduce the crack occurrence. Therefore, heat generation difference method has beneficial effect on reducing crack induced by hydration heat resulting from heat generation difference between surface and center section.

  • PDF

Study on Temperature History and Compressive Strength of Mock-up Concrete Considering Seasonal Change (매스콘크리트의 계절에 따른 온도이력과 압축강도에 관한 실험)

  • Kim Young-Joo;Gong Min-Ho;Kim Kwang-Ki;Yang Dong-Il;Pack Moo-Young;Jung Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.89-92
    • /
    • 2005
  • Our country has experienced variations in temperature as belong to the area of the continental climate that shows four significant seasons. These occur quality of construction. As the hydration of cement processes, the strength of concrete is developed. In order to improve the quality of concrete, various conditions including temperature and humidity should be maintained appropriately and concrete itself should be cured sufficiently This paper is basic experiment for estimating influence of strength by seasonal mock-up concrete's heat of hydration and estimate relationship of compressive strength development by curing temperature. And show basic document as quality control.

  • PDF

Reducing Hydration Heat of Mass Concrete by Applying Combination of Powdered Materials and CGS as Fine Aggregate (분체계 재료조합 및 석탄 가스화 용융 슬래그를 잔골재로 활용한 매스 콘크리트 수화열 저감)

  • Park, Sang-Won;Han, Jun-Hiu;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.169-180
    • /
    • 2024
  • In this study, to suggest an efficient method of using coal gasification slag(CGS), a byproduct from integrated gasification combined cycle(IGCC), as a combined fine aggregate for concrete mixture, the diverse performances of concrete mixtures with combined fine aggregates of CGS, river sand, and crushed sand were evaluated. Additionally, using CGS, the reduction of the hydration heat and the strength developing performance were analyzed to provide a method for reducing the heat of hydration of mass concrete by using combined fine aggregate with CGS and replacing fly ash with cement. The results of the study can be summarized as follows: as a method of recycling CGS from IGCC as concrete fine aggregate, a combination of CGS with crushed sand offers advantages for the concrete mixture. Additionally, when the CGS combined aggregate is used with low-heat-mix designed concrete with fly ash, it has the synergistic effect of reducing the hydration heat of mass concrete compared to the low-heat-designed concrete mixture currently in wide use.