• Title/Summary/Keyword: 망간산화물 침전

Search Result 15, Processing Time 0.022 seconds

Investigation on Reaction Products From Oxidative Coupling Reactions of 1-Naphthol By Manganese Oxide (망간산화물에 의한 1-Naphthol의 산화-결합 반응에 따른 반응산물 연구)

  • Lim, Dong-Min;Lee, Doo-Hee;Kang, Ki-Hoon;Shin, Hyun-Snag
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.989-996
    • /
    • 2007
  • In this study, abiotic transformation of 1-naphthol(1-NP) via oxidative-coupling reaction and its reaction products were investigated in the presence of Mn oxides. The reaction products were characterized for their relative polarity using solvent extraction experiment and reverse-phase HPLC, and for structure using CCMS and LC/MS, and for absorption characteristics using UV-Vis spectrometry. The reaction products present in aqueous phase were more polar than parent naphthol and comprised of 1,4-naphthoquinon(1,4-NPQ) and oligomers such as dimers and trimers. Hydrophilic component present in water phase after solvent$(CH_2Cl_2)$ extractions was identified as naphthol polymerized products having molecular weight(m/z) ranging from 400 to 2,000, and showed similar UV-Vis. absorption characteristics to that of foil fulvic acid. Transformation of 1,4-NPQ, which is non-reactive to Mn oxide, to the polymerized products via cross-coupling reaction in the presence of 1-NP was also verified. In this experimental conditions(20.5 mg/L, 1-NP, 2.5 g/L $MnO_2$, pH 5), the transformation of 1-NP into the oligomers and polymerized products were about 83% of initial 1-NP concentrations, and more than 30% of the reaction products was estimated to be water insoluble fractions, not extracted by $H_2O$ methanol. Results from this study suggest that Mn oxide-mediated treatment of naphthol contaminated soils can achieve risk reduction through the formation of oligomers md polymer precipitation.

Evidences of Soil-Forming Processes and Groundwater Movement Obscuring Sedimentary Structures: A Trench Profile in Yongjang-li, Gyeongju, South Korea (퇴적 구조 관찰 시 유념해야 할 토양화 및 지하수 유동 흔적: 경주 용장리 트렌치 단면의 예)

  • Yoon, Soh-joung
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.519-528
    • /
    • 2019
  • In 2017, Korea Institute of Geoscience and Mineral Resources (KIGAM) has excavated a trench at Yongjang-li in the city of Gyeongju to examine the evidence of fault movement related with the 2016 earthquake in unconsolidated sediments. In the trench profile, the author has observed the features of ongoing soil-forming processes and groundwater movement overlapped on the sedimentary layers. The soil formation was in its initial stage, and most of the original sedimentary layers could be observed. The color changes depending on the redox conditions and by the Mn/Fe oxide precipitation, however, were the most significant features obscuring sedimentary records. The dark Mn oxide precipitates formed at the groundwater levels often concealed the sedimentary unit boundaries. The groundwater levels varied depending on the particle sizes of the sedimentary layers contacting the groundwater, and the Mn oxide precipitates have formed at varying depths. The groundwater could move upward along the narrow pores in the fine-textured sedimentary layer more than a few meters showing the gray color indicating a reducing condition for iron.

Comparison of Heavy Metal Adsorption by Manganese Oxide-Coated Activated Carbon according to Manufacture Method (활성탄-망간 산화물 합성소재의 제조방법에 따른 중금속 흡착특성 비교)

  • Lee, Seul Ji;Lee, Myoung-Eun;Chung, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • The adsorption characteristics of Pb(II) and Cu(II) by the manganese oxide-coated activated carbon (MOAC) were investigated by series of batch experiments. MOAC was prepared by three types of manufacturing methods such as chemical precipitation method (CP), hydrothermal method (HT) and supercritical method (SC). Pseudo-second-order and Langmuir models adequately described kinetics and isotherm of Pb(II) and Cu(II) adsorption on the experimented adsorbents. These results indicated that heavy metal ions were chemically adsorbed onto uniform monolayered adsorption sites. The coating of manganese oxide enhanced the adsorption capacities of AC. And adsorption capacities of Pb(II) and Cu(II) were significantly affected by the manufacturing method of MOAC. The highest adsorption performance was obtained by using SC, followed by HT and CP, which is caused from high uniformity and amount of manganese oxide coated onto AC induced by high temperature and pressure. These results show that MOAC can be used as an effective adsorbent to remediate heavy metal contaminated environment.

A Comparative Study on the Removals of 1-Naphthol by Natural Manganese Oxides and Birnessite (천연망간산화물과 버네사이트에 의한 1-Naphthol의 제거 특성 비교)

  • Lee, Doo-Hee;Harn, Yoon-I;Kang, Ki-Hoon;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.278-286
    • /
    • 2009
  • In this study, four natural Mn oxides ($NMO_1-NMO_4$) was characterized using x-ray diffraction, scanning electron microscopy, and their removal efficiency for 1-naphthol (1-NP) in aqueous phase, using batch reactor, was investigated. The results were compared with one another and a synthetic manganese oxide, birnessite. The NMOs have a various Mn minerals including pyrolusite (${\beta}-MnO_2$), cryptomeltane (${\alpha}-MnO_2$) as well as birnessite (${\delta}-MnO_2$) depending on their sources, which results in different removal efficiencies (removals, kinetics) and reaction types (sorption or oxidative-transformation). The comparative study showed that $NMO_1$ (electrolytic Mn oxide) have a higher removal efficiency for 1-NP via oxidative-transformation compared to birnessite. The 1-NP removals by NMOs were followed by pseudo-first order reaction, and the surface area-normalized specific rate constants ($K_{surf},\;L/m^2$ min) determined were in order of $NMO_1(3.31{\times}10^{-3})$>${\delta}-MnO_2(1.48{\times}10^{-3}){\fallingdotseq}NMO_3(1.46{\times}10^{-3})$>$NMO_2(0.83{\times}10^{-3})$>$NMO_4(0.67{\times}10^{-3})$. From the solvent extraction experiments with the Mn oxide precipitates after reaction, it was observed that the oxidative-transformation rates of 1-NP were in order of $NMO_1{\fallingdotseq}{\delta}-MnO_2$>$NMO_3$>$NMO_4{\gg}NMO_2$ and the analysis of HPLC chromatogram and UV-Vis. absorption ratios ($A_{2/4}$, $A_{2/6}$) on the supernatant confirmed that the reaction products were oligomers formed by oxidative-coupling reaction. Results from this study proved that natural Mn oxide (except $NMO_2$) used in this experiment can be effectively applied for the removal of naphthols in aqueous phase, and the removal efficiencies are depending on the surface characters of the Mn oxides.

Geochemistry and Mineralogical Characteristics of Precipitate formed at Some Mineral Water Springs in Gyeongbuk Province, Korea (경북지역 주요 약수의 지화학과 침전물의 광물학적 특성)

  • Choo, Chang-Oh;Lee, Jin-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.139-151
    • /
    • 2009
  • Mineralogical characteristics of secondary precipitate formed at some mineral water springs in Gyeongbuk Province, Korea were studied in relation to water chemistry. The chemical water types of mineral water springs are mostly classified as $Ca-HCO_3$ type, but $Na(Ca)-HCO_3$ and $Ca-SO_4$ types are also recognized. Ca, Fe, and $HCO_3\;^-$ are the most abundant components in the water. The pH values of most springs lie in 5.76${\sim}$6.81, except Hwangsu spring having pH 2.8. Saturation indices show that all springs are supersaturated with respect to iron minerals and oxyhydroxides such as hematite and goethite. The result of particle size analysis shows that the precipitate is composed of the composite with various sizes, indicating the presence of iron minerals susceptible to a phase transition at varying water chemistry or the mixtures consisting of various mineral species. The particle size of the reddish precipitate is larger than that of the yellow brown precipitate. Based on XRD and SEM analyses, the precipitate is mostly composed of ferrihydrite (two-line type), goethite, schwertmannite, and calcite, with lesser silicates and manganese minerals. The most abundant mineral fanned at springs is ferrihydrite whose crystals are $0.1{\sim}2\;{\mu}m$ with an average of $0.5\;{\mu}m$ in size, characterized by a spherical form. It should be interestingly noted that schwertmannite forms at Hwangsu spring whose pH is very low. At Shinchon spring, Gallionella ferruginea, one of the iron bacteria, is commonly found as an indicator of the important microbial activity ascribed to the formation of iron minerals because very fine iron oxides with a spherical form are closely distributed on surfaces of the bacteria. A genetic relationship between the water chemistry and the formation of the secondary precipitate from mineral water springs was discussed.

Estimation of Geochemical Evolution Path of Groundwaters from Crystalline Rock by Reaction Path Modeling (반응경로 모델링을 이용한 결정질암 지하수의 지구화학적 진화경로 예측)

  • 성규열;박명언;고용권;김천수
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • The chemical compositions of groundwaters from the granite areas mainly belong to Ca-HC0$_{3}$ and Na-HC0$_{3}$type, and some of these belong to Ca-(CI+S0$_{4}$) and Na-(CI+S0$_{4}$) type. Spring waters and groundwaters from anorthosite areas belong to Ca-HC03 and Na-HC03 type, respectively. The result of reaction path modeling shows that the chemical compositions of aqueous solution reacted with granite evolve from initial Ca-CI type, via CaHC0$_{3}$ type, to Na-HC0$_{3}$ type. The result of rain water-anorthosite interaction is similar to evolution path of granite reaction and both of these results agree well with the field data. In the reaction path modeling of rain watergranite/anorthosite reaction, as a reaction is progressing, the activity of hydrogen ion decreases (pH increases). The concentrations of cations are controlled by the dissolution of rock-forming minerals and precipitation and re-dissolution of secondary minerals according to the pH. The continuous addition of granite causes the formation of secondary minerals in the following sequence; gibbsite plus hematite, Mn-oxide, kaolinite, silica, chlorite, muscovite (a proxy for illite here), calcite, laumontite, prehnite, and finally analcime. In the anorthosite reaction, the order of precipitation of secondary minerals is the same as with granite reaction except that there is no silica precipitation and paragonite precipitates instead of analcime. The silica and kaolinite are predominant minerals in the granite and anorthosite reactions, respectively. Total quantities of secondary minerals in the anorthosite reaction are more abundant than those in the granite reaction.

Electrochemical Characteristics of LiMn2O4 Cathodes Synthesized from Various Precursors of Manganese Oxide and Manganese Hydroxide (다양한 형태 및 구조의 망간산화물 및 망간수산화물 전구체로부터 합성한 LiMn2O4양극의 전기화학적 특성 연구)

  • Lee, Jong-Moon;Kim, Joo-Seong;Hong, Soon-Kie;Lee, Jeong-Jin;Ahn, Han-Cheol;Cho, Won-Il;Mho, Sun-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.172-180
    • /
    • 2012
  • The $LiMn_2O_4$ cathodes for lithium ion battery were synthesized from various precursors of manganese oxides and manganese hydroxides. As the first step, nanosized precursors such as ${\alpha}-MnO_2$ (nano-sticks), ${\beta}-MnO_2$ (nano-rods), $Mn_3O_4$ (nano-octahedra), amorphous $MnO_2$(nano-spheres), and $Mn(OH)_2$ (nano-plates) were prepared by a hydrothermal or a precipitation method. Spinel $LiMn_2O_4$ with various sizes and shapes were finally synthesized by a solid-state reaction method from the manganese precursors and LiOH. Nano-sized (500 nm) octahedron $LiMn_2O_4$ showed high capacities of 107 mAh $g^{-1}$ and 99 mAh $g^{-1}$ at 1 C- and 50 C-rate, respectively. Three dimensional octahedral crystallites exhibit superior electrochemical characteristics to the other one-dimensional and two-dimensional shaped $LiMn_2O_4$ nanoparticles. After 500 consecutive charge discharge battery cycles at 10 C-rate with the nano-octahedron $LiMn_2O_4$ cathode, the capacity retention of 95% was observed, which is far better than any other morphologies studied in this work.

Kinetics of Chromium(III) Oxidation by Various Manganess Oxides (망간 산화물에 의한 3가 크롬의 산화)

  • Chung, Jong-Bae;Zasoski, Robert J.;Lim, Sun-Uk
    • Applied Biological Chemistry
    • /
    • v.37 no.5
    • /
    • pp.414-420
    • /
    • 1994
  • Birnessite, pyrolusite and hausmannite were synthesized and tested for the ability to oxidize Cr(III) to Cr(VI). These oxides differed in zero point of charge, surface area, and crystallinity. The kinetic study showed that Cr(III) oxidation on the Mn-oxide surface is a first-order reaction. The reaction rate was various for different oxide at different conditions. Generally the reaction by hausmannite, containing Mn(III), was faster than the others, and oxidation by pyrolusite was much slower. Solution pH and initial Cr(III) concentration had a significant effect on the reaction. Inhibited oxidation at higher pH and initial Cr(III) concentration could be due to the chance of Cr(III) precipitation or complexing on the oxide surface. Oxidations by birnessite and hausmannite were faster at lower pH, but pyrolusite exhibited increased oxidation capacity at higher pH in the range between 3.0 and 5.0. Reactions were also temperature sensitive. Although calculated activation energies for the oxidation reactions at pH 3.0 were higher than the general activation energy for diffusion, there is no experimental evidence to suggest which reaction is the rate limiting step.

  • PDF

Petrological and Geological Safety Diagnosis of Multi-storied Stone Pagoda in the Daewonsa Temple, Sancheong, Korea (대원사 다층석탑의 지질학적 및 암석학적 안전진단)

  • 이찬희;서만철
    • Economic and Environmental Geology
    • /
    • v.35 no.4
    • /
    • pp.355-368
    • /
    • 2002
  • The multi-storied Daewonsa stone pagoda (Treasure No. 1112) in the Sancheong, Korea was studied on the basis of deterioration and geological safety diagnosis. The stone pagoda is composed mainly of granitic gneiss, partly fine-grained granitic gneiss, leucocratic gneiss, biotite granite and ceramics. Each rock of the pagoda is highly exfoliated and fractured along the edges. Some fractures in the main body and roof stones are treated by cement mortar. This pagoda is strongly covered with yellowish to reddish brown tarnish due to the amorphous precipitates of iron hydroxides. Dark grey crust by manganese hydroxides occur Partly, and some Part coated with white grey gypsum and calcite aggregates from the reaction of cement mortar and rain. As the main body, roof and upper part of the pagoda, the rocks are developed into the radial and linear cracks. Surface of this pagoda shows partly yellowish brown, blue and green patchs because of contamination by algae, lichen, moss and bracken. Besides, wall-rocks of the Daewonsa temple and rock aggregates in the Daewonsa valley are changed reddish brown color with the same as those of the pagoda color. It suggests that the rocks around the Daewonsa temple are highly in iron and manganese concentrations compared with the normal granitic gneiss which color change is natural phenomena owing to the oxidation reaction by rain or surface water with rocks. Therefore, for the attenuation of secondary contamination, whitening and reddishness, the possible conservation treatments are needed. Consisting rocks of the pagoda would be epoxy to reinforce the fracture systems for the structural stability on the basements.

Characterization of Microbial Diversity of Metal-Reducing Bacteria Enriched from Groundwater and Reduction/Biomineralization of Iron and Manganese (KURT 지하심부 지하수 내 토착 금속환원미생물의 종 다양성 및 철/망간의 환원과 생광물화작용)

  • Kim, Yumi;Oh, Jong-Min;Jung, Hea-Yeon;Lee, Seung Yeop;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.431-439
    • /
    • 2014
  • The purposes of this research were to investigate the enrichment of metal-reducing bacteria from KURT groundwater and the identification of the microbial diversity by 16S rRNA as well as to examine microbial Fe(III)/Mn(IV) reduction and to analyze morphological features of interactions between microbes and precipitates and their mineralogical composition. To cultivate metal-reducing bacteria from groundwater sampled at the KURT in S. Korea, different electron donors such as glucose, acetate, lactate, formate, pyruvate and Fe(III)-citrate as an electron accepter were added into growth media. The enriched culture was identified by 16S rRNA gene sequence analysis for the diversity of microbial species. The effect of electron donors (i.e., glucose, acetate, lactate, formate, pyruvate) and electron acceptors (i.e., akaganeite, manganese oxide) on microbial iron/manganese reduction and biomineralization were examined using the 1st enriched culture, respectively. SEM, EDX, and XRD analyses were used to determine morphological features, chemical composition of microbes and mineralogical characteristics of the iron and manganese minerals. Based on 16S rRNA gene analysis, the four species, Fusibacter, Desulfuromonas, Actinobacteria, Pseudomonas sp., from KURT groundwater were identified as anaerobic metal reducers and these microbes precipitated metals outside of cells in common. XRD and EDX analyses showed that Fe(III)-containing mineral, akaganeite (${\beta}$-FeOOH), reduced into Fe(II)/Fe(III)-containing magnetite ($Fe_3O_4$) and Mn(IV)-containing manganese oxide (${\lambda}-MnO_2$) into Mn(II)-containing rhodochrosite ($MnCO_3$) by the microbes. These results implicate that microbial metabolism and respiratory activities under anaerobic condition result in reduction and biomineralization of iron and manganese minerals. Therefore, the microbes cultivated from groundwater in KURT might play a major role to reduce various metals from highly toxic, mobile to less toxic, immobile.