DOI QR코드

DOI QR Code

Evidences of Soil-Forming Processes and Groundwater Movement Obscuring Sedimentary Structures: A Trench Profile in Yongjang-li, Gyeongju, South Korea

퇴적 구조 관찰 시 유념해야 할 토양화 및 지하수 유동 흔적: 경주 용장리 트렌치 단면의 예

  • Received : 2019.12.24
  • Accepted : 2019.12.24
  • Published : 2019.12.28

Abstract

In 2017, Korea Institute of Geoscience and Mineral Resources (KIGAM) has excavated a trench at Yongjang-li in the city of Gyeongju to examine the evidence of fault movement related with the 2016 earthquake in unconsolidated sediments. In the trench profile, the author has observed the features of ongoing soil-forming processes and groundwater movement overlapped on the sedimentary layers. The soil formation was in its initial stage, and most of the original sedimentary layers could be observed. The color changes depending on the redox conditions and by the Mn/Fe oxide precipitation, however, were the most significant features obscuring sedimentary records. The dark Mn oxide precipitates formed at the groundwater levels often concealed the sedimentary unit boundaries. The groundwater levels varied depending on the particle sizes of the sedimentary layers contacting the groundwater, and the Mn oxide precipitates have formed at varying depths. The groundwater could move upward along the narrow pores in the fine-textured sedimentary layer more than a few meters showing the gray color indicating a reducing condition for iron.

본 논문에서는 2017년 경주시 내남면 용장리 트렌치 단면에서 퇴적층을 관찰할 때 고려해야하는 토양화 과정과 지하수의 유동에 기인하여 나타나는 특성을 기술하였다. 지표로부터 굴착된 트렌치 단면은 토양화 과정과 지하수 유동에 의한 흔적을 포함하고 있어 퇴적학자들의 관찰에 영향을 줄 수 있다. 이 사이트 토양은 비교적 초기단계의 토양화 과정에 있어서 퇴적층의 특징을 관찰하는데 크게 어려움을 주지 않으나, 퇴적층리 관찰을 가장 어렵게 하는 요인은 지하수의 이동에 따른 망간산화물과 철산화물의 침전이었다. 지하수면을 따라 형성된 이 침전물은 퇴적층의 경계면에 형성되어 있기도 하고, 지하수면의 위치 또한 접하고 있는 퇴적층의 입자 크기에 따라 달라지므로 여러 위치에서 침전물이 관찰되었다. 또 이들 지하수면 상하부에서는 각기 철의 산화환원 상태에 따라 색변화가 관찰되므로 퇴적층 기술에 주의가 요구된다. 미세기공을 통해 모세관 현상으로 상부로 이동하는 지하수에 의해 일부 세립질 퇴적층이 지하수면 수 미터 상부까지 환원상태를 유지하면서 환원철 상태를 지시하는 색을 띠기도 하였다.

Keywords

References

  1. Aitkenhead, M.J., Coull, M. Towers, W. Hudson, G. and Black, H.I.J. (2013) Prediction of soil characteristics and colour using data from the National Soils Inventory of Scotland. Geoderma, v.200-201, p.99-107. https://doi.org/10.1016/j.geoderma.2013.02.013
  2. Baumann, K., Schoning, I., Schrumpf, M., Ellerbrock, R.H. and Leinweber, P. (2016) Rapid assessment of soil organic matter: Soil color analysis and Fourier transform infrared spectroscopy. Geoderma, v.27, p.49-57.
  3. Brady, N.C. and Weil, R.R. (1996) The nature and properties of soils. Prentice Hall Inc., New Jersey, 740p.
  4. Brouwer, C., Prins, K. and Heibloem, M. (1989) Irrigation water management: irrigation scheduling, Training manual No. 4. Food and Agriculture Organization, Rome, 43 p.
  5. Cheon, Y., Ha, S. and Son, M. (2017) Geometry and kinematics of fault systems in the Uiseong block of the Gyeongsang Basin, and their roles on the basin evolution. J. Geol. Soc. Korea, v.53, p.241-264. https://doi.org/10.14770/jgsk.2017.53.2.241
  6. Choi, S.-J., Ghim, Y.S., Cheon, Y. and Ko, K. (2019) The first discovery of Quaternary fault in the western part of the South Yangsan fault - Sinwoo Site. Econ. Environ. Geol., v.52, p.251-258. https://doi.org/10.9719/EEG.2019.52.3.251
  7. Evans, C.V. and Franzmeier, D.P. (1988) Color index values to represent wetness and aeration in some Indiana soils. Geoderma, v.41, p.353-368. https://doi.org/10.1016/0016-7061(88)90070-5
  8. Freitas, R.M., Perilli, T.A.G. and Ladeira, A.C.Q. (2013) Oxidative precipitation of mangases from acid mine drainage by potassium permanganate. J. Chem., v.2013, p.1-8.
  9. Franzmeier, D.P., Yahner, J.E., Steinhardt, G.C. and Sinclair, H.R. (1983) Color patterns and water table levels in some Indiana soils. Soil Sci. Soc. Am. J., v.47 p.1196-1202. https://doi.org/10.2136/sssaj1983.03615995004700060027x
  10. Ghim, Y.S. and Ko, K. (2019) Geological significance of liquefaction and soft-sediment deformation structures. Econ. Environ. Geol., v.52, p.471-484.
  11. James, B.R. and Bartlett, R.J. (1999) Redox phenomena. In Sumner, M.E. (ed.) Handbook of Soil Science. CRC Press, Washington, D.C., p.B169-B194,
  12. KIGAM(Korea Institute of Geoscience and Mineral Resources) (2018) 일반인을 위한 한반도 동남권 지진: 경주지진 & 포항지진을 중심으로, KIGAM, 56p.
  13. Kim, Y.-S., Kim, T., Kyung, J.B., Cho, C.S., Choi, J.-H. and Choi, C.U. (2017) Preliminary study on rupture mechanism of the 9.12 Gyeonju Earthquake. J. Geol. Soc. Korea, v.53, p.407-422. https://doi.org/10.14770/jgsk.2017.53.3.407
  14. Min, K.D. and Kim, W.Y. (1977) A Study on the Structural Deformations in the Sedimentary Layer Resulted from Magma Intrusion. Econ. Environ. Geol., v.10, p.37-48.
  15. Nahm, W.-H. (2018) Present situation of research of Quaternary terrestrial unconsolidated sediments in Korea. J. Geol. Soc. Korea, v.54, p.107-119. https://doi.org/10.14770/jgsk.2018.54.1.107
  16. NIAST(National Institute of Agricultural Science and Technology) (2011) Jigog Series, described by Song, K.C., Noh, D.C. and Hyun, B.K. (http://soil.rda.go.kr/soil/koreaSoils/soilSearch.jsp)
  17. Sanchez-Maranon, M., Romero-Freire, A. and Martin-Peinado, F.J. (2015) Soil-color changes by sulfuricization induced from a pyritic surface sediment. Catena, v.135, p.173-183. https://doi.org/10.1016/j.catena.2015.07.023
  18. Sain A., Griffin, A. and Dietrich, A.M. (2014) Assessing taste and visual perception of Mn(II) and Mn(IV). J. Am. Water Works Assoc., v. 106, p. E32-E40. https://doi.org/10.5942/jawwa.2014.106.0003
  19. Takeno, N. (2005) Atlas of Eh-pH diagrams: Intercoparison of thermodynamic databases. Geological Survey of Japan Open File Report No. 419.
  20. Watkinson, D., Weber, L. and Anheuser, K. (2005). Staining of archaeological glass from manganese-rich environments. Archaeometry, v.47, p.69-82. https://doi.org/10.1111/j.1475-4754.2005.00188.x
  21. Wills, S.A., Burras, C.L. and Sandor, J.A. (2007) Prediction of soil organic carbon content using field and laboratory measurements of soil color. Soil Sci. Soc. Am. J., v.71, p.380-388. https://doi.org/10.2136/sssaj2005.0384