• Title/Summary/Keyword: 마이크로 소성

Search Result 197, Processing Time 0.025 seconds

Ni-Co Alloy Electroforming for Micro Mold Fabrication (마이크로 금형 제작을 위한 니켈-코발트 합금 전주기술개발)

  • Shin S. H.;Jeong M. K.;Kim Y. S.;Han S. H.;Hur Y. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.276-279
    • /
    • 2004
  • The factors affecting Ni-Co alloy electroforming were investigated to determine the optimum bath composition and electroplating parameters, like pH, temperature, and current density, suitable for high speed fabrication of a micro mold with longer lifetime. To obtain alloy deposits having uniform thickness and composition, electroplating parameters were finely tuned with home-made electroforming apparatus. Ni-Co alloy deposits had linearly increased Co with $Co^{2+}$ ion concentration in electroplating bath, and showing $412H_v$ of Victors hardness at $23wt\%$ of Co content. For Ni-Co alloy, sulfonate and diol related organic additives were very effective to alleviate its residual stress and surface roughness. The maximum deposition rate was $106{\mu}m/hr$ at 10ASD and the tensile strength of alloy deposit was 2 times larger than that of Ni only case.

  • PDF

Micro-shaft and Micro-hole Machining for Micro Punching (마이크로 펀칭용 미세축, 미세구멍의 가공)

  • Ryu S. H.;Cho P. J.;Lee K. H.;Chu C. N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.239-244
    • /
    • 2002
  • In this study, we developed the manufacturing technology of micro-hole and micro-shaft for micro punching system using micro electrical discharge machining and micro electro chemical machining. Micro punching dies of tungsten carbide with $55\;{\mu}m\;and\;110\;{\mu}m$ diameter and $250\;{\mu}m$ depth were made by micro electrical discharge machining. The form accuracy and surface roughness of die hole were pretty good and it was shown that the punched hole quality was fine. WC micro-shaft with $30\;{\mu}m$ diameter was made by the multistep micro electro chemical machining. The developed technologies can be effectively used in precision manufacturing of micro punching die and mass production of micro-shaft.

  • PDF

Observation of Growth Behavior of Induced Hillock for Nano/Micro Patterning on Surface of Borosilicate with Etching Time and Load (보로실리케이트 표면의 나노/마이크로 패터닝을 위한 식각 시간, 하중에 따른 유기 힐록의 성장거동 관찰)

  • Cho S. H.;Youn S. W.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.182-185
    • /
    • 2005
  • Indentation pattern and line pattern were machined on borosilicate(Pyrex 7740 glass) surface using the combination of mechanical machining by $Nanoi-indenter\circledR$ XP and HF wet etching, and a etch-mask effect of the affected layer of the nano-scratched and indented Pyrex 7740 glass surface was investigated. In this study, effects of indentation and scratch process with etching time on the morphologies of the indented and scratched surfaces after isotropic etching were investigated from an angle of deformation energies.

  • PDF

An Experimental Study of burrless shearing on the micro wire (마이크로 와이어의 전단 형상에 관한 실험적 연구)

  • Hong N. P.;Kim B. H.;Kim H. Y.;Kim W. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.448-452
    • /
    • 2005
  • Punching/blanking/shearing is among the oldest and most frequently used sheet metal forming process. We have developed the shear device for burrless cutting using the micro wire. Since the burr minimization and fine shear plane, this paper is a study on the effect of the shear angle and clearance of the cutter-cutter. And, we confirm the tendency of the shear plane. It is impossible to completely remove the burr in the shearing process. In order to minimize the burr size and fine shear plane, we have accomplished the various experiment conditions such as the shear angle and clearance. Despite the quality of shear plane is not good enough yet, it is possible to make the burr minimization and fine shear plane by the optimization of process parameters.

  • PDF

Fabrication of Mold-insert for Micro-lens Using Electroforming Process (Electroforming 공정을 이용한 마이크로 렌즈용 몰드 인서트의 제작)

  • 이남석;문수동;강신일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.94-97
    • /
    • 2002
  • Micromolding methods are most suitable for mass production of plastic microlens and lens array with low cost. Among the procedures related with micromolding of microlens array, fabrication of mold insect which contains micro cavity of lens shape is the most important stage. In this study, nickel mold inserts for 45 $\mu\textrm{m}$ and 95 $\mu\textrm{m}$ diameters lens way were fabricated using electroforming process. The mother for metal mold inset was made using reflow method. A micro compression molding with polymer powders was used to test the qualities of the metal mold insets. Micro lens profile and surface roughness was measured by interferometric technique and AFM, respectively. The final molded lens replicated the mother well, and had good surface quality.

  • PDF

Finite Element Analysis on the Springback in the Forging-Bending of Metal Micro-Wire (금속 마이크로 와이어의 단조-굽힘 성형에서 스프링백에 관한 해석적 연구)

  • Kang, J.J.;Hong, S.K.;Jeon, B.H.;Pyo, C.R.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.649-656
    • /
    • 2008
  • Springback is one of factors affecting precision in metal forming. Its effect is particularly prominent in bending process. In this study, bending and forging process are used in order to manufacture a micro spring with two bending region from $60{\mu}m$ diameter wire. Springback in the process lowers the precision of the micro spring. Overbending for springback compensation has wide usage in a general way. However, this method requires repeated modifications of press dies until the tolerance is allowable, which causes that production cost and time increase. In this paper, we analyzed the mechanism of springback in the forming process of the micro spring using finite element method. In addition, a simple method to control springback without modifying dies was proposed by performing numerical analysis with various parameters.

A Theoretical and Experimental Study on the Tribological Size Effect in Microforming Processes (마이크로 성형에서 마찰거동의 크기효과에 대한 이론적 및 실험적 연구)

  • Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.394-400
    • /
    • 2013
  • Microforming is a very efficient and economical technology to fabricate very small metallic parts in various applications. In order to extend the use of this forming technology for the production of microparts, the size effect, which occurs with the reduction of part size and affects the forming process significantly, must be thoroughly investigated. In this study, the tribological size effect in microforming was studied using modeling and scaled ring compression experiments. A micro-scale friction approach based on the slip-line field theory and lubricant pocket model was used to understand the friction mechanism and explain the tribological size effect. Ring compression tests were performed to analyze the interfacial friction condition from the deformation characteristics of the ring specimens. In addition, finite element analysis results were utilized to quantitatively determine the size-dependent frictional behavior of materials in various process conditions. By comparing theoretical results and experimental measurements for different size factors, the accuracy and reliability of the model were verified.

Fabrication and Characterizations of Thick PZT Films for Micro Piezoelectric Devices (마이크로 압전 소자용 후막 PZT의 제조 및 물성 평가)

  • 박준식;박광범;윤대원;박효덕;강성군;최태훈;이낙규;나경환
    • Transactions of Materials Processing
    • /
    • v.11 no.7
    • /
    • pp.569-574
    • /
    • 2002
  • Recently, thick PZT films are required for the cases of micro piezoelectric devices with high driving force, high breakdown voltage and high sensitivity, and so on. In this work, thick PZT films were fabricated by Sol-Gel multi-coating method. Microstructures, and electrical properties of films were investigated by XRD, FESEM, impedance analyzer, and P-E hysteresis. PZT films with 2.7$mu extrm{m}$ to 4.4${\mu}{\textrm}{m}$ thickness were fabricated. Dielectric constant, loss, remnant polarization and coercive field of them were 880~1650 at 1kHz, 2~3% at 1kHz, 26~32 $\mu$C/$ extrm{cm}^2$, and 33~60kV/cm, respectively. Also a transverse piezoelectric coefficient $(e_{31,f})$ measurement system was fabricated and tested for thick film samples.

Fabrication of Microlens Array by UV-molding (UV 성형을 통한 마이크로 렌즈 어레이의 제작)

  • 김석민;임지석;강신일;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.236-241
    • /
    • 2004
  • UV-molded microlens arrays with high replication quality were fabricated using a parametric design method. It is important to maximize the replication quality, because one can obtain the replicated micro-optical components with desired properties by accurate control of the shape. In the present study, nickel mold inserts for microlens arrays with lenses having diameters between $3\mu\textrm{m}$ and $230\mu\textrm{m}$ were fabricated by electroforming process. An UV-molding system was designed and constructed, a simple technique to avoid micro-air bubbles was first suggested, and the effects of the compression pressure and UV-curing dose on the replication quality of UV-molded microlens arrays with a diameter of $14\mu\textrm{m}$ were examined experimentally. Finally, geometrical and optical properties of the replicated microlens arrays were measured and analyzed.

Review on Reliability Test Method for Optical/Thermofluidic Micro Component (광열유체 마이크로 부품의 신뢰성 평가를 위한 시험법에 관한 고찰)

  • 이낙규;나경환;최현석;한창수
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.242-247
    • /
    • 2004
  • Literature review on reliability test method for developing high performance optical/thermofluidic components. Since the miniaturization by the conventional mechanical process is limited to milli-structure, i.e. $10^{-3}m$, new technology for fabricating of mechanical components is needed to match cost, reliability, and integrability criteria of micro-structure. Although numbers of various researches on MEMS/MOEMS devices and components, including material characterization, design and optimization, system validation, etc., the lack of standards and specifications make the researches and developments difficult. For that reason, this paper is intended to propose the methods of reliability test for measuring the mechanical property of optical/ thermofluidic components.