• Title/Summary/Keyword: 마이크로 구조 표면

Search Result 331, Processing Time 0.024 seconds

Structure and Growth of Tin Whisker on Leadframe with Lead-free Solder Finish (무연솔더 도금된 리드프레임에서 Sn 위스커의 성장과 구조)

  • Kim Kyung-Seob;Leem Young-Min;Yu Chong-Hee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.1-7
    • /
    • 2004
  • Tin plating on component finishes may grow whiskers under certain conditions, which may cause failures in electronics equipment. To protect the environment, 'lead-free' among component finishes is being promoted worldwide. This paper presents the evaluation results of whiskers on two kinds of lead-free plating materials at the plating temperature and under the reliability test. The rising plating temperature caused increasing the size of plating grain and shorting the growth of whisker. The whisker was grown under the temperature cycling the bent type in matt Sn plating and striated type in malt Sn-Bi. The whisker growth in Sn-Bi plating was shorter than that in Sn plating. In FeNi42 leadframe, the $7.0{\~}10.0{\mu}m$ diameter and the $25.0{\~}45.0{\mu}m$ long whisker was grown under 300 cycles. In the 300 cycles of Cu leadframe, only the nodule(nuclear state) grew on the surface, and in the 600 cycles, a $3.0{\~}4.0{\mu}m$ short whisker grew. After 600 cycles, the ${\~}0.34{\mu}m$ thin $Ni_3Sn_4$ formed on the Sn-plated FeNi42. However, we observed the amount of $0.76{\~}1.14{\mu}m$ thick $Cu_6Sn_5$ and ${\~}0.27{\mu}m$ thin $Cu_3Sn$ intermetallics were observed between the Sn and Cu interfaces. Therefore, the main growth factor of a whisker is the intermetallic compound in the Cu leadframe, and the coefficient of thermal expansion mismatch in FeNi42.

  • PDF

Spalling of Intermetallic Compound during the Reaction between Electroless Ni(P) and Lead-free Solders (무전해 Ni(P)과 무연솔더와의 반응 중 금속간화합물의 spalling 현상에 관한 연구)

  • Sohn Yoon-Chul;Yu Jin;Kang S. K.;Shih D. Y,;Lee Taek-Yeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.37-45
    • /
    • 2004
  • Electroless Ni(P) has been widely used for under bump metallization (UBM) of flip chip and surface finish layer in microelectronic packaging because of its excellent solderability, corrosion resistance, uniformity, selective deposition without photo-lithography, and also good diffusion barrier. However, the brittle fracture at solder joints and the spatting of intermetallic compound (IMC) associated with electroless Ni(P) are critical issues for its successful applications. In the present study, the mechanism of IMC spatting and microstructure change of the Ni(P) film were investigated with varying P content in the Ni(P) film (4.6,9, and $13 wt.\%$P). A reaction between Sn penetrated through the channels among $Ni_3Sn_4$ IMCs and the P-rich layer ($Ni_3P$) of the Ni(P) film formed a $Ni_3SnP$ layer. Thickening of the $Ni_3SnP$ layer led to $Ni_3Sn_4$ spatting. After $Ni_3Sn_4$ spatting, the Ni(P) film directly contacted the molten solder and the $Ni_3P$ phase further transformed into a $Ni_2P$ phase. During the crystallization process, some cracks formed in the Ni(P) film to release tensile stress accumulated from volume shrinkage of the film.

  • PDF

Effect of Aging treatment and Epoxy on Bonding Strength of Sn-58Bi solder and OSP-finished PCB (Sn-58Bi Solder와 OSP 표면 처리된 PCB의 접합강도에 미치는 시효처리와 에폭시의 영향)

  • Kim, Jungsoo;Myung, Woo-Ram;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.97-103
    • /
    • 2014
  • Among various lead-free solders, the Sn-58Bi solders have been considered as a highly promising lead-free solders because of its low melting temperature and high tensile strength. However, Sn-58Bi solder has the poor ductility. To enhance the mechanical property of Sn-58Bi solder, epoxy-enhanced Sn-58Bi solders have been studied. This study compared the microstructures and the mechanical properties of Sn-58Bi solder and Sn-58Bi epoxy solder with aging treatment. The solders ball were formed on the printed circuit board (PCB) with organic solderability preservative (OSP) surface finish, and then the joints were aged at 85, 95, 105 and $115^{\circ}C$ for up to 100, 300, 500 and 1000 hours. The shear test was conducted to evaluate the mechanical property of the solder joints. $Cu_6Sn_5$ intermetallic compound (IMC) layer grew with increasing aging time and temperature. The IMC layer for the Sn-58Bi epoxy solder was thicker than that for the Sn-58Bi solder. According to result of shear test, the shear strength of Sn-58Bi epoxy solder was higher than that of Sn-58Bi solder and the shear strength decreased with increasing aging time.

Study of Iodide Adsorption on Organobentonite using X-ray Absorption Spectroscopy (X-선 흡수분광기를 이용한 유기벤토나이트의 요오드 흡착연구)

  • Yoon, Ji-Hae;Ha, Ju-Young;Hwang, Jin-Yeon;Hwang, Byoung-Hoon;Gordon E. Brown, Jr.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.23-34
    • /
    • 2009
  • The adsorption of iodide on untreated bentonite and bentonites modified with organic cation (i.e., hexadecylpyridinium chloride monohydrate ($HDP^+$)) was investigated, and the organobentonites were characterized using uptake measurements, ${\mu}$-XRD, and electrophoretic mobilities measurement. Uptake measurements indicate that bentonite has a high affinity for $HDP^+$. Our ${\mu}$-XRD study indicates that organobentonites significantly expanded in basal spacing and organic cations were substantially intercalated into the interlayer spaces of bentonite. The electrophoretic mobility indicates that organobentonite tht is modified with organic cations in excess of the CEC of bentonite is completely different from untreated bentonite in the surface charge distribution. We found significant differences in adsorption capacities of iodide depending on the bentonite properties as follows: iodide adsorption capacities were 439 mmol/kg for the bentonite modified with $HDP^+$ at an equivalent amount corresponding to 200% of the CEC of bentonite whereas no adsorption of iodide was observed for the untreated bentonite. The molecular environments of iodine adsorbed on organobentonites were further studied using I K-edge and $L_{III}$-edge x-ray absorption spectroscopy (XAS). The X-ray absorption near-edge structure (XANES) of iodine spectra from organobentonites was similar to that of KI reference solution. Linear combination fitting of EXAFS data suggests the fraction of iodine reacted with the organic compound increased with increasing loading of the organic compound on organobentonites. In this study, we observed significant differences in the adsorption environments of iodide depending on the modified property of bentonite and suggest that an organobentonite has potential as reactive barrier material around a nuclear waste repository containing anionic radioactive iodide.

Measurement of Mechanical Properties of Thin Film Materials for Flexible Displays (플렉서블 디스플레이용 박막 소재 물성 평가)

  • Oh, Seung Jin;Ma, Boo Soo;Kim, Hyeong Jun;Yang, Chanhee;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.77-81
    • /
    • 2020
  • Commercialization of flexible OLED displays, such as rollable and foldable displays, has attracted tremendous interest in next-generation display markets. However, during bending deformation, cracking and delamination of thin films in the flexible display panels are the critical bottleneck for the commercialization. Therefore, measuring mechanical properties of the fragile thin films in the flexible display panels is essential to prevent mechanical failures of the devices. In this study, tensile properties of the metal and ceramic nano-thin films were quantitatively measured by using a direct tensile testing method on the water surface. Elastic modulus, tensile strength, and elongation of the sputtered Mo, MoTi thin films, and PECVD deposited SiNx thin films were successfully measured. As a result, the tensile properties were varied depending on the deposition conditions and the film thickness. The measured tensile property values can be applied to stress analysis modeling for mechanically robust flexible displays.

Property of Composite Titanium Silicides on Amorphous and Crystalline Silicon Substrates (아몰퍼스실리콘의 결정화에 따른 복합티타늄실리사이드의 물성변화)

  • Song Oh-Sung;Kim Sang-Yeob
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.1-5
    • /
    • 2006
  • We prepared 80 nm-thick TiSix on each 70 nm-thick amorphous silicon and polysilicon substrate using an RF sputtering with $TiSi_2$ target. TiSix composite silicide layers were stabilized by rapid thermal annealing(RTA) of $800^{\circ}C$ for 20 seconds. Line width of $0.5{\mu}m$ patterns were embodied by photolithography and dry etching process, then each additional annealing process at $750^{\circ}C\;and\;850^{\circ}C$ for 3 hours was executed. We investigated the change of sheet resistance with a four-point probe, and cross sectional microstructure with a field emission scanning electron microscope(FE-SEM) and transmission electron microscope(TEM), respectively. We observe an abrupt change of resistivity and voids at the silicide surface due to interdiffusion of silicide and composite titanium silicide in the amorphous substrates with additional $850^{\circ}C$ annealing. Our result implies that the electrical resistance of composite titanium silicide may be tunned by employing appropriate substrates and annealing condition.

  • PDF

Optimization of Electro-Optical Properties of Acrylate-based Polymer-Dispersed Liquid Crystals for use in Transparent Conductive ZITO/Ag/ZITO Multilayer Films (투명 전도성 ZITO/Ag/ZITO 다층막 필름 적용을 위한 아크릴레이트 기반 고분자분산액정의 전기광학적 특성 최적화)

  • Cho, Jung-Dae;Kim, Yang-Bae;Heo, Gi-Seok;Kim, Eun-Mi;Hong, Jin-Who
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.291-298
    • /
    • 2020
  • ZITO/Ag/ZITO multilayer transparent electrodes at room temperature on glass substrates were prepared using RF/DC magnetron sputtering. Transparent conductive films with a sheet resistance of 9.4 Ω/㎡ and a transmittance of 83.2% at 550 nm were obtained for the multilayer structure comprising ZITO/Ag/ZITO (100/8/42 nm). The sheet resistance and transmittance of ZITO/Ag/ZITO multilayer films meant that they would be highly applicable for use in polymer-dispersed liquid crystal (PDLC)-based smart windows due to the ability to effectively block infrared rays (heat rays) and thereby act as an energy-saving smart glass. Effects of the thickness of the PDLC layer and the intensity of ultraviolet light (UV) on electro-optical properties, photopolymerization kinetics, and morphologies of difunctional urethane acrylate-based PDLC systems were investigated using new transparent conducting electrodes. A PDLC cell photo-cured using UV at an intensity of 2.0 mW/c㎡ with a 15 ㎛-thick PDLC layer showed outstanding off-state opacity, good on-state transmittance, and favorable driving voltage. Also, the PDLC-based smart window optimized in this study formed liquid crystal droplets with a favorable microstructure, having an average size range of 2~5 ㎛ for scattering light efficiently, which could contribute to its superior final performance.

Characterization of (Bi,La)$Ti_3O_12$ Ferroelectric Thin Films on $SiO_2/Si$/Si Substrates by Sol-Gel Method (졸-겔 방법으로 $SiO_2/Si$ 기판 위에 제작된 (Bi,La)$Ti_3O_12$ 강유전체 박막의 특성 연구)

  • 장호정;황선환
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2003
  • The $Bi_{3.3}La_{0.7}O_{12}$(BLT) capacitors with Metal-Ferroelectric-Insulator-Silicon structure were prepared on $SiO_2/Si$ substrates by using sol-gel method. The BLT thin films annealed at $650^{\circ}C$ and $700^{\circ}C$ showed randomly oriented perovskite crystalline structures. The full with at half maximum (FWHM) of the (117) main peak was decreased from $0.65^{\circ}$ to $0.53^{\circ}$ with increasing the annealing temperature from $650^{\circ}C$ to $700^{\circ}C$, indicating the improvement in the crystalline quality of the film. In addition, the grain size and $R_rms$ , values were increased with increasing the annealing temperatures, showing the rough film surface at higher annealing temperatures. From the capacitance-voltage (C-V) measurements, the memory window voltage of the BLT film annealed at $700^{\circ}C$ was found to be about 0.7 V at an applied voltage of 5 V. The leakage current density of the BLT film annealed at $700^{\circ}C$ was about $3.1{\times}10^{-8}A/cm^2$.

  • PDF

Structural and optical properties of Si nanowires grown with island-catalyzed Au-Si by rapid thermal chemical vapor deposition(RTCVD) (Au-Si을 촉매로 급속화학기상증착법으로 성장한 Si 나노선의 구조 및 광학적 특성 연구)

  • Kwak, D.W.;Lee, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.279-285
    • /
    • 2007
  • We have demonstrated structural evolution and optical properties of the Si-NWs on Si (111) substrates with synthesized nanoscale Au-Si islands by rapid thermal chemical vapor deposition(RTCVD). Au nano-islands (10-50nm in diameter) were employed as a liquid-droplet catalysis to grow Si-NWs via vapor-liquid-solid mechanism. Si-NWs were grown by a mixture gas of $SiH_4\;and\;H_2$ at pressures of $0.1{\sim}1.0$Torr and temperatures of $450{\sim}650^{\circ}C$. SEM measurements showed the formation of Si-NWs well-aligned vertically for Si (111) surfaces. The resulting NWs are 30-100nm in diameter and $0.4{\sim}12um$ in length depending on growth conditions. HR-TEM measurements indicated that Si-NWs are single crystals convered with about 3nm thick layers of amorphous oxide. In addition, optical properties of NWs were investigated by micro-Raman spectroscopy. The downshift and asymmetric broadening of the Si optical phonon peak with a shoulder at $480cm^{-1}$ were observed in Raman spectra of Si-NWs.

Effects of Surface Offcut Angle of GaAs Substrate on Dislocation Density of InGaP Epilayers (GaAs기판의 표면 Offcut각도가 InGaP 에피막의 전위밀도에 미치는 영향)

  • 이종원;박경수;이종식
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.3
    • /
    • pp.49-56
    • /
    • 2002
  • In this study, the InGaP epilayers were grown on the exact and the $2^{\circ}$, $6^{\circ}$, $10^{\circ}$ of cut GaAs substrates by metal-organic vapor phase epitaxy, and the effects of interfacial elastic strains determined by the substrate offcut angle upon the resulting dislocation density of epilayer were investigated for the first time. The elastic strains were obtained from lattice mismatch and lattice misfit by TXRD, and the dislocation densities from epilayer x-ray FWHM. For the offcut angle range used in this study, the elastic strain was maximum and x-ray FWHM minimum at offcut angle $6^{\circ}$. From 11K PL measurements, PL wavelength was found to decrease with an increase of offcut angle. PL intensity was maximum at offcut angle $6^{\circ}$. TEM results showed that the electron diffraction pattern was of typical zincblende structure, and that the dislocation density was minimum for substrate offcut angle $6^{\circ}$. The results obtained in this study, along with the device fabrication process and beam characteristics, clearly demonstrated that the optimum substrate offcut angle for the InGaP/GaAs heterostructures is $6^{\circ}$.

  • PDF