Study of Iodide Adsorption on Organobentonite using X-ray Absorption Spectroscopy

X-선 흡수분광기를 이용한 유기벤토나이트의 요오드 흡착연구

  • Yoon, Ji-Hae (Department of Geological & Environmental Science, Stanford University) ;
  • Ha, Ju-Young (Department of Geological & Environmental Science, Stanford University) ;
  • Hwang, Jin-Yeon (Division of Earth Environmental System, Pusan National University) ;
  • Hwang, Byoung-Hoon (Division of Earth Environmental System, Pusan National University) ;
  • Gordon E. Brown, Jr. (Department of Geological & Environmental Science, Stanford University)
  • 윤지해 (스탠포드대학교 지질환경과학과) ;
  • 하주영 (스탠포드대학교 지질환경과학과) ;
  • 황진연 (부산대학교 지구환경시스템학부) ;
  • 황병훈 (부산대학교 지구환경시스템학부) ;
  • Published : 2009.03.31

Abstract

The adsorption of iodide on untreated bentonite and bentonites modified with organic cation (i.e., hexadecylpyridinium chloride monohydrate ($HDP^+$)) was investigated, and the organobentonites were characterized using uptake measurements, ${\mu}$-XRD, and electrophoretic mobilities measurement. Uptake measurements indicate that bentonite has a high affinity for $HDP^+$. Our ${\mu}$-XRD study indicates that organobentonites significantly expanded in basal spacing and organic cations were substantially intercalated into the interlayer spaces of bentonite. The electrophoretic mobility indicates that organobentonite tht is modified with organic cations in excess of the CEC of bentonite is completely different from untreated bentonite in the surface charge distribution. We found significant differences in adsorption capacities of iodide depending on the bentonite properties as follows: iodide adsorption capacities were 439 mmol/kg for the bentonite modified with $HDP^+$ at an equivalent amount corresponding to 200% of the CEC of bentonite whereas no adsorption of iodide was observed for the untreated bentonite. The molecular environments of iodine adsorbed on organobentonites were further studied using I K-edge and $L_{III}$-edge x-ray absorption spectroscopy (XAS). The X-ray absorption near-edge structure (XANES) of iodine spectra from organobentonites was similar to that of KI reference solution. Linear combination fitting of EXAFS data suggests the fraction of iodine reacted with the organic compound increased with increasing loading of the organic compound on organobentonites. In this study, we observed significant differences in the adsorption environments of iodide depending on the modified property of bentonite and suggest that an organobentonite has potential as reactive barrier material around a nuclear waste repository containing anionic radioactive iodide.

유기양이온(hexadecylpyridinium chloride monohydrate ($HDP^+$))으로 개질시킨 유기벤토나이트의 특성을 유기탄소함량 측정, 마이크로-X 선회절 분석, 전기영동 이동성 측정을 이용하여 관찰하고, 무처리 벤토나이트와 유기벤토나이트의 요오드에 대한 흡착성을 비교 조사하였다. 벤토나이트는 유기양이온인 $HDP^+$에 대해서 높은 친화력을 보여주었다. 마이크로-X선 회절 분석 결과에 의하면 유기벤토나이트는 저면 간격에 있어서 현저하게 팽창을 하였고, 이는 유기 양이온이 벤토나이트의 층간에 충분히 삽입되었음을 의미한다. 전기영동 이동성 측정에 의하면벤토나이트의 양이온 교환 용량 이상의 유기 양이온으로 치환시킨 유기벤토나이트의 경우 무처리 벤토나이트와 전혀다른 표면 전하분포를 나타냄을 알 수 있다. 요오드의 흡착능에 있어서, 무처리 벤토나이트는 요오드를 전혀 흡착하지 못한 반면, 벤토나이트의 양이온 교환용량의 200% 양으로 개질 시킨 유기벤토나이트의 경우 요오드 439 mmol/kg를 흡착하였다. 유기 벤토나이트에 흡착된 요오드의 분자 환경은 요오드 K-edge와 $L_{III}$-edge X-선 흡수 분광을 이용하여 연구하였다. 유기벤토나이트의 요오드 X선 흡수 변연 구조를 통해 유기벤토나이트에 흡착된 요오드의 경우 KI 표준용액의 구조와 유사함을 알 수 있었다. 광범위 X-선 흡수 미세구조의 선형 결합 분석결과는 유기 복합체와 반응한 요오드의 비율이 벤토나이트에 흡착된 유기 복합체의 양이 증가함에 따라 같이 증가함을 나타냈다. 본 연구를 통해, 벤토나이트의 개질 특성에 의해 요오드의 흡착 환경이 현저하게 달라짐을 관찰할 수 있었으며, 음이온성 방사성 요오드를 포함하는 핵폐기물 저장소 주변의 방어벽 물질로 유기벤토나이트의 적용 가능성을 살펴 볼 수 있었다.

Keywords

References

  1. Ashworth, D.J., Shaw, G., Butler, A.P., and Ciciani, L. (2003) Soil transport and plant uptake of radio-iodine from near-surface groundwater. J. Environ. Radioact., 70, 99-114 https://doi.org/10.1016/S0265-931X(03)00121-8
  2. Balsley, S.D., Brady, P.V., Krumhansl, J.L., and Anderson, H.L. (1996) Iodide Retention by Metal Sulfide Surfaces: Cinnabar and Chalcocite. Environ. Sci. Technol., 30, 3025-3027 https://doi.org/10.1021/es960083c
  3. Bonhoure, I., Scheidegger, A.M., Wieland, E., and Dahn, R. (2002) Iodine species uptake by cement and CSH studied by I K-edge X-ray absorption spectroscopy. Radiochim. Acta, 90, 647-651 https://doi.org/10.1524/ract.2002.90.9-11_2002.647
  4. Bors, J., Dultz, S., and Riebe, B. (2000) Organophilic bentonites as adsorbents for radionuclides: I. Adsorption of ionic fission products. Appl. Clay Sci., 16, 1-13 https://doi.org/10.1016/S0169-1317(99)00041-1
  5. Bors, J., Gorny, A., and Dultz, S. (1997) Iodide, caesium and strontium adsorption by organophilic vermiculite. Clay Miner., 32, 21-28 https://doi.org/10.1180/claymin.1997.032.1.04
  6. Bors, J., Martens, R., and Kuhn, W. (1988) Studies on the role of natural and anthropogenic organic substances in the mobility of radio-iodine in soils. Radiochim. Acta, 44/45, 201-206
  7. Brown, G.E., Jr., Calas, G., Waychunas, G.A., and Petiau, J. (1988) X-ray absorption spectroscopy and its applications in mineralogy and geochemistry. In: Haqthorne, F.C. (Ed), Spectroscopic methodsin mineralogy and Geochemistry, Mineralogical society of America, Reviews in Mineralogy, Washington DC, 18, 431-512
  8. Bruno, J. and Ewing, R.C. (2006) Spent nuclear fuel. Elements, 2, 343-349 https://doi.org/10.2113/gselements.2.6.343
  9. Buraglio, N., Aldahan, A., Possnert, G., and Vintersved, I. (2001) I-129 from the nuclear reprocessing facilities traced in precipitation and runoff in northern Europe. Environ. Sci. Technol, 35, 1579-1586 https://doi.org/10.1021/es001375n
  10. Chun, Y., Sheng, G., and Boyd, S.A. (2003) Sorptive characteristics of tetraalkylammonium-exchanged smectite clays. Clays Clay Miner., 51, 415-420 https://doi.org/10.1346/CCMN.2003.0510407
  11. Couture, R.A. and Seitz, M.G. (1983) Sorption of anions of iodine by iron oxides and kaolinite. Nucl. Chem. Waste Manage., 4, 301-306 https://doi.org/10.1016/0191-815X(83)90055-4
  12. Darder, M., Colilla, M., and Ruiz-Hitzky, E. (2003) Biopolymer-Clay Nanocomposites Based on Chitosan Intercalated in Montmorillonite. Chem. Mater., 15, 3774-3780 https://doi.org/10.1021/cm0343047
  13. Deng, Y. and Dixon, J.B. (2002) Soil organic matter and organic-mineral interaction. In: Dixon, J.B. and Schulze, D.G., Soil Mineralogy with Environmental Applications, Madison, Wisconsin, 69-107
  14. Dultz, S., Riebe, B., and Bunnenberg, C. (2005) Temperature effects on iodine adsorption on organo-clay minerals: II. Structural effects. Appl. Clay Sci., 28, 17-30 https://doi.org/10.1016/j.clay.2004.01.005
  15. Fuge, R. (1996) Geochemistry of iodine in relation to iodine deficiency diseases. Geological Society, London, Special Publications, 113, 201-211 https://doi.org/10.1144/GSL.SP.1996.113.01.16
  16. Fuhrmann, M., Bajt, S., and Schoonen, M.A.A. (1998) Sorption of iodine on minerals investigated by X-ray absorption near edge structure (XANES) and $^{125}I$ tracer sorption experiments. Appl. Geochem., 13, 127-141 https://doi.org/10.1016/S0883-2927(97)00068-1
  17. Gecol, H., Ergican, E., and Miakatsindila, P. (2005) Biosorbent for tungsten species removal from water: Effects of co-occurring inorganic species. J. Colloid Interface Sci., 292, 344-353 https://doi.org/10.1016/j.jcis.2005.06.016
  18. Gradev, G.D. (1987) Sorption of iodide ions on cationic forms of clinoptilolite. J. Radioanal. Nucl. Chem., 116, 341-346 https://doi.org/10.1007/BF02035778
  19. Haq, Z., Bancroft, G.M., Fyfe, W.S., Bird, G., and Lopata, V.J. (1980) Sorption of iodide on copper. Environ. Sci. Technol., 14, 1106-1110 https://doi.org/10.1021/es60169a014
  20. Hou, X.L., Fogh, C.L., Kucera, J., Andersson, K.G., Dahlgaard, H., and Nielsen, S.P. (2003) Iodine- 129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation. Sci. Total Environ., 308, 97-109 https://doi.org/10.1016/S0048-9697(02)00546-6
  21. Hu, Q., Zhao, P., Moran, J.E., and Seaman, J.C. (2005) Sorption and transport of iodine species in sediments from the Savannah River and Hanford Sites. J. Contam. Hydrol., 78,185-205 https://doi.org/10.1016/j.jconhyd.2005.05.007
  22. Huie, Z., Zishu, Z., and Lanying, Z. (1988) Sorption of radionuclides technetium and iodine on minerals. Radiochim. Acta, 44/45, 143-145
  23. Ikeda, Y., Sazarashi, M., Tsuji, M., and Seki, R. (1994) Adsorption of I- ions on cinnabar for 129I waste management. Radiochim. Acta, 65, 195-198
  24. Johnston, C.T. (1996) Sorption of organic compounds on clay minerals: A surface functional group approach. In: B.L. Sawhney, (ed.), Organic Pollutants in the Environments, CMS Workshop Lectures, 8, The Clay Mineral Society, Boulder, Colorado, 1-44
  25. Kang, M.J., Chun, K.S., Rhee, S.W., and Do, Y. (1999) Comparison of sorption behavior of I- and $TcO_4$ - on Mg/Al layered double hydroxide. Radiochim. Acta, 85, 57-63
  26. Kaplan, D.I., Serne, R.J., Parker, K.E., and Kutnyakov, I.V. (2000) Iodide Sorption to Subsurface Sediments and Illitic Minerals. Environ. Sci. Technol., 34, 399-405 https://doi.org/10.1021/es990220g
  27. Kodama, S., Takahashi, Y., Okumura, K., and Uruga, T. (2006) Speciation of iodine in solid environmental samples by iodine K-edge XANES: Application to soils and ferromanganese oxides. Sci. Total Environ., 363, 275-284 https://doi.org/10.1016/j.scitotenv.2006.01.004
  28. Koh, S.M. and Dixon, J.B. (2001) Preparation and application of organo-minerals as sorbents of phenol, benzene and toluene. Appl. Clay Sci., 18, 111-122 https://doi.org/10.1016/S0169-1317(00)00040-5
  29. Krishna, B.S., Murty, D.S.R., and Jai Prakash, B.S. (2001) Surfactant-modified clay as adsorbent for chromate. Appl. Clay Sci., 20, 65-71 https://doi.org/10.1016/S0169-1317(01)00039-4
  30. Lagaly, G. (1981) Characterization of clays by organic compounds. Clay Miner., 16, 1-21 https://doi.org/10.1180/claymin.1981.016.1.01
  31. Li, Z., Beachner, R., McManama, Z., and Hanlie, H. (2007) Sorption of arsenic by surfactant-modified zeolite and kaolinite. Microporous and Mesoporous Materials, Zeolite '06 (Proceedings of the 7th International Conference on the Occurrence, Properties and Utilization of Natural Zeolites), 1 October, 105, 291-297 https://doi.org/10.1016/j.micromeso.2007.03.038
  32. Li, Z., Willms, C.A., and Kniola, K. (2003) Removal of anionic contaminants using surfactant-modified palygorskite and sepiolite. Clays Clay Miner., 51, 445-451 https://doi.org/10.1346/CCMN.2003.0510411
  33. Maryuk, O., Pikus, S., Olszewska, E., Majdan, M., Skrzypek, H., and Zieba, E. (2005) Benzyldimethyloctadecylammonium bentonite in chromates adsorption. Mater. Letters, 59, 2015-2017 https://doi.org/10.1016/j.matlet.2005.02.041
  34. Mortland, M.M. (1986) Mechanisms of adsorption of non-humic organic species by clay. In: Huang, P.M. and Schnitzer, M. Interactions of Soil Minerals with Natural Organics and Microbes, Soil Science Society of America, Madison, Wisconsin. 59-76
  35. Mortland, M.M., Shaobai, S., and Boyd, S.A. (1986) Clay-organic complexes as adsorbents for phenol and chlorophenols. Clays Clay Miner., 34, 581-585 https://doi.org/10.1346/CCMN.1986.0340512
  36. Ozcan, A.S., Erdem, B., and Ozcan, A. (2004) Adsorption of Acid Blue 193 from aqueous solutions onto Na-bentonite and DTMA-bentonite. J. Colloid Interface Sci., 280, 44-54 https://doi.org/10.1016/j.jcis.2004.07.035
  37. Ozcan, A., Sahin, M., and Ozcan, A.S. (2005) Adsorption of Nitrate Ions onto Sepiolite and Surfactant- modified Sepiolite. Adsorp. Sci. Technol., 23, 323-333 https://doi.org/10.1260/0263617054769987
  38. Paradies, H.H. and Habben, F. (1993) Structure of N-hexadecylpyridinium chloride monohydrate. Acta Cryst., C49, 744-747
  39. Radlinger, G. and Heumann, K.G. (2000) Transformation of Iodide in Natural and Wastewater Systems by Fixation on Humic Substances. Environ. Sci. Technol., 34, 3932-3936 https://doi.org/10.1021/es000868p
  40. Reed, W.A., May, I., Livens, F.R., Charnock, J.M., Jeapes, A.P., Gresley, M., Mitchell, R.M., and Knight, P. (2002) XANES fingerprinting of iodine species in solution and speciation of iodine in spent solvent from nuclear fuel reprocessing. J. Anal. Atom. Spectrom., 17, 541-543 https://doi.org/10.1039/b110805k
  41. Riebe, B. and Bunnenberg, C. (2007) Influence of temperature pre-treatment and high-molar saline solutions on the adsorption capacity of organoclay minerals. Phys. Chem. Earth, Parts A/B/C, 32, 581-587 https://doi.org/10.1016/j.pce.2006.02.060
  42. Riebe, B., Dultz, S., and Bunnenberg, C. (2005) Temperature effects on iodine adsorption on organo -clay minerals I. Influence of pretreatment and adsorption temperature. Appl. Clay Sci., 28, 9-16 https://doi.org/10.1016/j.clay.2004.01.004
  43. Risher, J., Diamond, G., Swarts, S.G., and Amata, R. (2004) Toxicological profile for Iodine. Agency for Toxic Substances and Disease Registry (ATSDR), US Department of Health and Human Services, Washington DC, 1-9
  44. Schlegel, M.L., Reiller, P., Mercier-Bion, F., Barre, N., and Moulin, V. (2006) Molecular environment of iodine in naturally iodinated humic substances: Insight from X-ray absorption spectroscopy. Geochim. Cosmochim. Acta, 70, 5536-5551 https://doi.org/10.1016/j.gca.2006.08.026
  45. Shen, Y.H. (2002) Removal of phenol from water by adsorption-flocculation using organobentonite. Water Res., 36, 1107-1114 https://doi.org/10.1016/S0043-1354(01)00324-4
  46. Sheng, G., Xu, S., and Boyd, S.A. (1996) Cosorption of organic contaminants from water by hexadecyltrimethylammonium- exchanged clays. Water Res., 30, 1483-1489 https://doi.org/10.1016/0043-1354(95)00303-7
  47. Sheppard, M.I. and Thibault, D.H. (1992) Chemical behaviour of iodine in organic and mineral soils. Appl. Geochem., 7, 265-272 https://doi.org/10.1016/0883-2927(92)90042-2
  48. Shimamoto, Y.S. and Takahashi, Y. (2008) Superiority of K-edge XANES over LIII-edge XANES in the Speciation of Iodine in Natural Soils. Anal. Sci., 24, 405-409 https://doi.org/10.2116/analsci.24.405
  49. Smith, J.A. Associate Member, ASCE and Jaffe, P.R. (1994) Benzene transport through landfill liners containing organophilic bentonite. J. Environ. Eng., 120, 1559-1577 https://doi.org/10.1061/(ASCE)0733-9372(1994)120:6(1559)
  50. Stipanicev, V. and Branica, M. (1996) Iodine speciation in the water column of the Rogoznica Lake (Eastern Adriatic Coast). Sci. Total Environ., 182, 1-9
  51. Strickert, R., Friedman, A.M., and Fried, S. (1978) Sorption of technetium and iodine radioisotopes by various minerals. Trans. Am. Nucl. Soc, 28, ANS annual meeting, San Diego, CA, USA, 365-366
  52. Stumm, W. and Morgan, J.J. (1996) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. John Wiley & Sons, New York, 1022p
  53. Theng, B.K.G. (1974) The chemistry of clay-organic reactions. Wiley, New York. 343p
  54. Vujakovic, A., Dakovic, A., Lemic, J., Radosavljevic- Mihajlovic, A., and Tomaševic-Čanovic, M. (2003) Adsorption of inorganic anionic contaminants on surfactant modified minerals. J. Serb. Chem. Soc., 68, 833-841 https://doi.org/10.2298/JSC0311833V
  55. Xu, S. and Boyd, S.A. (1995a) Cationic Surfactant Adsorption by Swelling and Nonswelling Layer Silicates. Langmuir, 11, 2508-2514 https://doi.org/10.1021/la00007a033
  56. Xu, S. and Boyd, S.A. (1995b) Cationic surfactant sorption to a vermiculitic subsoil via hydrophobic bonding. Environ. Sci. Technol., 29, 312-320 https://doi.org/10.1021/es00002a006
  57. Yamada, H., Kiriyama, T., Onagawa, Y., Hisamori, I., Miyazaki, C., and Yonebayashi, K. (1999) Speciation of iodine in soils. Soil Sci. Plant Nutr., 45, 563-568 https://doi.org/10.1080/00380768.1999.10415819
  58. Yamaguchi, N., Nakano, M., Tanida, H., Fujiwara, H., and Kihou, N. (2006) Redox reaction of iodine in paddy soil investigated by field observation and the I K-Edge XANES fingerprinting method. J. Environ. Radioact., 86, 212-226 https://doi.org/10.1016/j.jenvrad.2005.09.001
  59. Zhu, L. and Zhu, R. (2007) Simultaneous sorption of organic compounds and phosphate to inorganicorganic bentonites from water. Separ. Purif. Technol., 54, 71-76 https://doi.org/10.1016/j.seppur.2006.08.009