• Title/Summary/Keyword: 마이크로캡슐 합성

Search Result 14, Processing Time 0.023 seconds

Suspension Polymerization of Thermally Expandable Microcapsules with Core-Shell Structure Using the SPG Emulsification Technique: Influence of Crosslinking Agents and Stabilizers (SPG 유화법을 사용하여 현탁중합한 코어-쉘 구조를 갖는 열팽창 마이크로캡슐 제조: 가교제 및 안정제의 영향)

  • Bu, Ji Hyun;Kim, Yeongseon;Ha, Jin Uk;Shim, Sang Eun
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.78-87
    • /
    • 2015
  • With aiming to prepare microcapsules having a particle size of $30-50{\mu}m$, thermally expandable capsules with relatively uniform particle sizes consisting of a n-octane/poly(acrylonitrile-co-methyl methacrylate) core/shell structure were synthesized using SPG membrane emulsification and suspension polymerization. Four steric stabilizers and five crosslinking agents were employed. When poly(vinyl alcohol) as a stabilizer was used, the prepared capsules showed a smooth and regular morphology and the liquid hydrocarbon (n-octane) was well encapsulated in the core. When 1,4-butnaediol methacrylate (BDDMA) was used as a crosslinker, the uniform capsules with the average diameter of $36.8{\mu}m$ were synthesized. The capsules prepared with 0.05 mol% BDDMA showed the best encapsulation efficiency.

A Study on Remaining Formaldehyde Concentration in the Synthesis of Self-Healing Microcapsules (자기치유성 마이크로캡슐 합성 공정에서의 포름알데히드 잔류량 연구)

  • Kim, Dong-Min;Lee, Jun-Seo;Ryu, Byung-Cheol;Chung, Chan-Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.129-133
    • /
    • 2020
  • The concentration of remaining formaldehyde contained in waste liquid emitted from the process of urea-formaldehyde microcapsule synthesis was analyzed by gas chromatography-mass spectrometry (GC-MS). Three factors that can affect on the reaction of formaldehyde were selected including pH, ammonium chloride input and temperature. The effect of these factors on the concentration of remaining formaldehyde was studied. When ammonium chloride input was 0.025g, microcapsules could not be obtained or core substance leaked out because of weak shell, and therefore this reaction condition would be inadequate. It was confirmed that the concentration of remaining formaldehyde could be minimized when the microencapsulation was conducted at 70℃ and pH 2.5 by using a ammonium chloride input of 0.050g. This study can make contribution to UF microencapsulation in safer working environment.

Synthesis and Characterization of Microcapsules Containing Phase Change Materials by Interfacial Polymerization (계면중합에 의한 상전이 물질 함유 폴리우레아 마이크로캡슐의 합성 및 분석)

  • 김필수;최상민;조창기
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.417-420
    • /
    • 2002
  • 마이크로 캡슐에 관한 연구는 벽 혹은 내부 물질의 성질, 캡슐화의 방법, 내부 구성물질의 내구성과 안정성 그리고, 확산, 투과, 부식, 용해등에 의한 유출현상등을 중심으로 진행되어 왔으며$^{1.2}$ , 1980년대 후반부터 섬유의 열적 성능을 개선하고자 캡슐화된 상전이 물질을 이용한 연구들이 시작 되었다[3-4]. 본 연구에서는 온도 조절 기능을 가지고 온도 감응형 섬유로의 적용을 위하여 상전이 물질(phase change materials: PCMs)을 함유하는 마이크로 캡슐을 제조하여 그 특성을 분석하고자 하였다. (중략)

  • PDF

Preparation and application of the functionalized Shampoo with core-shell microcapsule (코아-쉘 마이크로 캡슐을 이용한 기능성 샴푸의 제조 및 응용)

  • Seo, Mi-Young;Kim, Eun-Ji;Kim, In-Kyoung;Choi, Seong-Ho
    • Journal of Advanced Technology Convergence
    • /
    • v.1 no.1
    • /
    • pp.7-13
    • /
    • 2022
  • In this study, we prepared the functionalized Shampoo with three-type functionalized microcaples which were synthesized by microcapsulation, respectively. In detail, the functionalized microcapsule was included such as (1) the functionalized microcapsule with core-menthol and shell-melamine resin and (2) the functionalized microcapsule with core-menthol and shell-lecithin, and (3) the functionalized microcapsule with core-cinnamon oil and shell-lecithin, respectively. The size and morphology of the prepared microcapsules was evaluated via Optical Microscopy (OM), Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS). From these results, the prepared microcapsules with size of 0.1~0.2 ㎛ and spherical morphology was confirmed. Furthermore, we applied the prepared Shampoo to treat hair. As results we confirmed that the scalp temperature was decreased about 3~4 ℃ compared to no treatment. This result may be considered that the core compounds are vaporize when the functionalized Shampoo is treated on scalp. We will determine the change of scalp pore, diameter of hair, and etc during treatment of the functionalized Shampoo.

The Experimental Study on Preparation Characteristics of Self-healing Microcapsules for Mixing Cement Composites Utilizing Liquid Inorganic Materials (액상 무기재료를 활용한 시멘트 복합재료 혼합용 자기치유 마이크로 캡슐의 제조 특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Kim, Cheol-Gyu;Lim, Hak-Sang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.236-244
    • /
    • 2018
  • In this study, we tried to fabricate self - healing microcapsules using liquid inorganic materials which can be mixed directly with cement composites. The basic properties of the liquid inorganic material were evaluated and microencapsulation was performed. The focus of this paper is on the quality and manufacturing characteristics of cement composites rather than the healing effects of self - healing microcapsules according to mixed capsules. Test results, the self-healing microcapsules encapsulate liquid inorganic material which is stable at room temperature and has high crack followability, and the yield is over 90%. The size of self - healing microcapsule was able to change according to the synthetic agitation speed and it was able to secure more than 70% of target size. In addition, the loss of less than 10% was found to occur through the membrane strengthening of self - healing microcapsules, and it could be reduced by 50% compared with the case without membrane strengthening.

유/무기 하이브리드 기술을 이용한 서방형 가공제 합성 연구(2)

  • Park, Seong-Min;Gwon, Il-Jun;Kim, Sang-Uk;Mun, Du-Hwan;Yun, Nam-Sik
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.99-99
    • /
    • 2011
  • 최근 건강에 대한 관심이 높아지면서 천연 기능물질을 이용한 고기능 및 고부가가치 상품개발이 여러 산업분야에서 일반화되는 추세이다. 대표적으로 마이크로캡슐은 원하는 기능을 발휘할 수 있는 기능성 물질을 다양한 방법으로 다양한 제품에 부여함으로써, 기능성 물질을 오랜 기간 동안 외부로 방출하거나 외부의 환경으로부터 보호하는 수단으로 각광받고 있다. 이러한 마이크로캡슐은 의약분야 제초제, 멸충제, 곰팡이 방지제, 살균제로 적용되는 농약분야, 식품 분야, 화장품 분야 등의 전반에 걸쳐 응용 및 연구가 활발히 이루어지고 있다. 이에 본 연구에서는 다양한 나노 합성기술과 유/무기 하이브리드를 이용해 서방화 관련 기술을 개발하여 보습성, 항균, 노화방지, 외부 유해물질로부터의 피부보호 특성을 가진 인체 친화형 복합기능성 섬유 가공조제를 개발하여 다양한 섬유소재에 적용하고자 하며, 궁극적으로 기존 선진국 제품의 기능을 뛰어넘는 원천기술, 즉 새로운 가공제 합성과 응용성, 그 성능평가와 동시에 최적의 처리기술을 개발함으로써 섬유제품의 부가가치를 높이는 계기를 마련하고자 한다. 본 연구에서는 나노미터 직경을 갖는 침상형의 주형(hydroxyapatite)을 이용하여 중공 나노구조체를 제조 한 후 이에 천연고분자를 혼합하여 초음파처리 후 유/무기 하이브리드 기술을 이용한 서방성 가공제를 합성하였다. 중공의 나노구조체 확인은 투과전자현미경(TEM)을 이용하였으며, 주형의 나노구조체는 주사전자현미경(FE-SEM)으로 확인하였다. 이상의 결과를 통해 본 연구에서 제안한 방법이 나노구조체의 새로운 합성방법으로써 가능성을 확인할 수 있었다.

  • PDF

Studies on Particle Size Control and Stability of Lead Chromate Pigment Particles (크롬산납 무기안료 입자 제어 및 안정성에 관한 연구)

  • Park, Chan Kyu;Jung, Dae Yoon;Chang, Sang Mok;Lee, Sang Rok
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.264-269
    • /
    • 2008
  • For the synthesis of lead chromate pigments, we investigated the characteristics of particle growth with reacting conditions in the synthetic process, the effect of additives, and its micro-capsulation. The more tiny and uniform dispersion particles could be obtained at a lower pH and diluter intial concentration. The variation range of average pigment size was increased with the agitating speed. The pigment size could be controlled by adding aluminum sulfate as an additive, which maintained the optimum particle dispersion. It was found that the optimum micro-capsulation conditions were pH 9~10 and above $90^{\circ}C$ during the micro-capsulation of lead chromate pigment, and below 0.5% humidity after micro-capsulation.

Synthesis of Hollow Carbon Microspheres with Mesoporous Shell and Vacant Core Structure and Their Electrochemical Properties (중간세공을 갖는 껍질로 구성된 속이 빈 마이크로 탄소입자의 합성 및 이들의 전기화학적 특성)

  • Lee, Yae Won;Yang, Hee Chun;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.449-454
    • /
    • 2016
  • In this study, highly monodispersed porous carbon microcapsules with a hollow core were synthesized using polystyrene (PS) beads as a hard template. The surface of PS was first modified with polyvinylpyrollidone (PVP) for the easy attachment of inorganic silica sol. After coating the surface of PVP modified PS microspheres with SBA-16 sol, the carbon microcapsules with a hollow macroporous core were fabricated through reverse replication method by filling carbon sources in the mesopores of silica mold. The hollow carbons having a mesoporous shell structure and narrow particle size distribution could be obtained after the carbonization of carbon source and the dissolution of silica mold by HF solution. The mesoporous characteristics and electrochemical properties of hollow carbon microcapsules were characterized by XRD, SEM, TEM, $N_2$ adsorption/desorption analysis and cyclic voltammetry. They showed the high electric conductivity and capability for use as efficient electro-materials such as a supercapacitor.

A Potential Applicability of Microfluidic Techniques for Fabricating Advanced Cosmetic Materials (고급 화장품 소재 개발을 위한 마이크로플루딕스 기술의 잠재적 응용성)

  • Park, Sung-Hee;Kim, Han-Kon;Jeong, Kyu-Hyuck;Kim, Jin-Woong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.4
    • /
    • pp.245-258
    • /
    • 2008
  • We describe here how we can use microfluidic technologies for fabricating functional materials that could be potentially utilized in cosmetics; these include void structures, functional particulate materials, shell materials, and multi-layered colloids. We can obtain these functional materials as microfluidic approaches provide precise control over both outer dimensions and inner morphology of emulsion drops in picoliter-volume scales with high throughput. We have confirmed that this technique has a great potential to fabricate novel particles and capsules with a variety of chemical compositions as well as higher orders of layers. This microfluidic approach will allow us to develop a lot of new techniques that are useful for a variety of applications, including delivery systems, chemical separations, bio-sensing, actuators, and so on. We do believe that these new techniques will help cosmetic industry not only give rise advanced functional materials and systems but also widen its product categories.